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Abstract: Terrestrial water storage (TWS) anomaly has been a robust indicator in predicting and monitoring 

hydrometeorological hazards and sustainable water resources management to comprehend the water dynamics on 

Earth. The Gravity Recovery and Climate Experiment (GRACE) satellite identifies this change by heeding the Earth’s 

mass anomalies since 2002. However, due to an 11-month data gap before the operation of GRACE-FO, continuous 

investigation using GRACE has been challenging. This study employed an extreme gradient boosting (XGBoost) 

algorithm to reconstruct GRACE TWS anomaly by integrating the hydroclimatic variables from Noah surface models 

over a span of approximately 20 years, focusing on five Kalimantan basins. The testing set was evaluated using three 

statistical metrics, resulting in a correlation coefficient (CC) of 0.943, Nash–Sutcliffe efficiency (NSE) of 0.887, and 

scaled root-mean-square error (RMSE*) of 0.337. This approach effectively addresses the research gap in utilizing the 

GRACE product in an archipelago state such as Indonesia and offers an efficient method for reconstructing TWS 

anomalies for various hydrological systems at the local scale. 
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Introduction 
 

Terrestrial water storage (TWS) encompasses water accumulated on and below the Earth's surface, including 

soil moisture, root zone soil moisture, groundwater, snow, ice, vegetation storage, rivers, and lakes, tracking 

water cycle changes due to natural and human factors (Awange et al., 2008; Girotto & Rodell, 2019). At the 

same time, global water resources are unevenly distributed, leading to challenges of availability and scarcity 

exacerbated by human mismanagement (Senent-Aparicio et al., 2018). As one of the world's largest 

archipelagos, Indonesia exhibits diverse climatological patterns, rainfall variability, topography, land cover, 

basin sizes, population densities, and water needs for irrigation, domestic use, households, government, and 

industries (Mediawan et al., 2021). Evaluating water resources is crucial for effective catchment management 

(Wurbs, 2005), enabling proactive risk mitigation and sustainable water resource management to understand 

Indonesia's water dynamics moving forward. 

 

The GRACE (Gravity Recovery and Climate Experiment) satellite has been pivotal in providing quasi-global 

Terrestrial Water Storage Anomaly (TWSA) data since April 2002 (Xiong et al., 2021). GRACE detects 

changes in Earth's water mass and distribution, enabling the identification of hydrometeorological hazards, 

such as flood and hydrological drought, as anomalies (Cui, 2019; Jiang et al., 2023; Rateb et al., 2024; Tapley 

et al., 2019; Zhu et al., 2023). A gap in data occurred when GRACE ceased operation in October 2017, before 

the launch of its successor, GRACE-FO (Follow-on), in May 2018, causing a nearly one-year discontinuity. 
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This led to biases and uncertainties in hydrological models assimilated with GRACE TWSA data (Mo et al., 

2022).  

 

Previous studies have employed machine learning and deep learning algorithms to gap-fill the GRACE data. 

Traditional methods such as interpolation and sensor dependency are ineffective for long-term gaps or 

improving resolution. Interpolation fails to present new information in reconstructions due to its reliance on 

existing data, leading to potential accuracy limitations. Similarly, sensor-dependent methods using Swarm 

satellites cannot replicate high-frequency TWSA signals (Lai et al., 2022). Jiang et al. (2023) and Kumar et al. 

(2022) used a Multilayer Perceptron-Artificial Neural Network (MLP-ANN) to reconstruct GRACE TWSA 

for the Yarlung Tsangpo Brahmaputra River Basin and Telangana State in India, achieving high CC (0.96) and 

low RMSE (1.99 cm) using precipitation, temperature, and GLDAS (Global Land Data Assimilation System) 

hydrological models as predictors. (Sun et al., 2020) filled GRACE TWSA data gaps with a Deep Neural 

Network (DNN) for 60 global basins, including the Barito River Basin in Kalimantan, achieving varied results 

(CC = 0.88-0.95; RMSE = 4.5-10.6 cm). 

 

Based on the outlined background, this study aims to reconstruct hydrological patterns from GRACE/GRACE-

FO data by integrating hydroclimatic model data and machine learning methods. This approach remains 

relatively underexplored, especially in Indonesia, a vast archipelagic nation. Focusing on Kalimantan Island, 

the largest island of Indonesia with several extensive surface water bodies and basins as well as the future site 

of Indonesia's new capital, this study seeks to fill the gap and understand the anomaly in Terrestrial Water 

Storage (TWS) from 2003 to 2022. 
 

 
Figure 1. Study region. (A) Kalimantan basins: NKB (Northern Kalimantan), MHK (Mahakam), BAR (Barito), CKB 

(Central Kalimantan), and KAP (Kapuas) basins, blue to red colors indicate the surface elevation based on SRTM 

Digital Elevation Data Version 4 (https://srtm.csi.cgiar.org); (B) Provincial administration boundary. 
 

 

Data and Method 

 

Five basins, comprising Northern Kalimantan (NKB) (67,871.51 km2), Mahakam (MHK) (77,423 km2), Barito 

(BAR) (62,355.59 km2), Central Kalimantan (CKB) (80,478.66 km2), and Kapuas (KAP) (100,284.04 km2), 

basins, were designated as the study region in this research (Figure 1). NKB and CKB were defined as larger 

basins by merging several smaller basins. NKB consists of Sesayap, Kayan, Belayau, and Berau basins; while 

CKB includes Kahayan, Sebangau, Katingan, Mentaya, Seruyan, Kotawaringin, and Jelai basins. The varying 
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rainfall patterns and irrigation coverage areas influence the variability of TWS change over the study region. 

As a primary factor in water budgeting, rainfall plays a crucial role in the global water cycle and is a key driver 

of TWS changes (Humphrey et al., 2023). Additionally, the extent of irrigated areas affects the volume of 

water used in agricultural systems (Tirtalistyani et al., 2022). According to BMKG (2021), monsoonal 

precipitation patterns are observed in the southern regions of West, Central, and East Kalimantan. North 

Kalimantan and the northern parts of West, Central, and East Kalimantan exhibit equatorial patterns. In 2017, 

the irrigated areas in West, Central, South, East, and North Kalimantan were significantly smaller compared 

to densely populated islands like Java, measuring 91,561 ha, 13,850 ha, 47,203 ha, 11,875 ha, and 3,978 ha, 

respectively (Pusat Data dan Sistem Informasi Pertanian, 2020). 

 

1. Data 

 

This research incorporates GRACE/GRACE-FO terrestrial water storage anomaly (TWSA) data and GLDAS 

components. This research used GRACE/GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water 

Height (EWH) Coastal Resolution Improvement (CRI) Filtered Release 06.1 v.03 (Wiese et al., 2023) during 

2003-2022. This dataset is monthly gridded data in 0.5° spatial resolution with its native resolution of 3°× 3° 

equal area and produced by Jet Propulsion Laboratory (JPL). This study employed a simple linear interpolation 

method to fill the 21 months of short-term monthly data gaps (1-2 months) from 2003 to 2022, as applied by 

(Alshehri & Mohamed, 2023; Wang et al., 2020). This interpolation process results in a GRACE TWSA with 

11 consecutive months of data gaps. Subsequently, this study utilized Noah GLDAS V2.1 because of its 

identical reliability with GRACE products (Beaudoing & Rodell, 2020; Kumar et al., 2022). Noah GLDAS is 

monthly gridded data with 0.25° spatial resolution. Table 1 summarizes the ten parameters of Noah GLDAS 

employed in this study as the input variables in TWSA prediction. 

 
Table 1. Noah GLDAS data as input variables in TWSA prediction. 

Input variables Noah GLDAS parameters/unit Parameter description 

Precipitation (P) Rainf_tavg/kg m-2 s-1 Rain precipitation rate 

Evapotranspiration (ET) Evap_tavg/kg m-2 s-1 Evapotranspiration 

Runoff (Q) Qs_acc/kg m-2 Storm surface runoff 

Qsb_acc/kg m-2 Baseflow-groundwater runoff 

Soil moisture storage anomaly (SMSA) SoilMoi0_10cm_inst/kg m-2 Soil moisture (0-10 cm) 

SoilMoi10_40cm_inst/kg m-2 Soil moisture (10-40 cm) 

SoilMoi40_100cm_inst/kg m-2 Soil moisture (40-100 cm) 

SoilMoi100_200cm_inst/kg m-2 Soil moisture (100-200 cm) 

Plant canopy storage anomaly (PCSA) CanopInt_inst/kg m-2 Plant canopy surface water 

Temperature (T) Tair_f_inst/K Air temperature 
a Noah-derived TWSA (N) - - 

 

2. Methods 

 

Three primary stages of the data processing are illustrated as a flowchart in Figure 2. First, GRACE/GRACE-

FO data with a 0.5° resolution, including gaps over eleven months, serves as the dependent variable. The 

independent variables are initially at a 0.25° resolution and resampled to match the 0.5° resolution of the 

GRACE/GRACE-FO data. In predicting hydrometeorological phenomena, analyzing the time-lag effect of 

hydrological variables on TWS requires considering periods ranging from months to years (Barker et al., 2016; 

Melo & Wendland, 2016). This effect highlights how hydrological variables propagate through the terrestrial 

hydrological cycle (Yang, 2017). This study builds on previous research by employing a three-month lag to 

explain TWS anomalies (Gyawali et al., 2022; Wang et al., 2023), linking hydrological variable x from months 

i, i-1, i-2, to i-3 with TWSA in month i.  

 

Second, data is split randomly into training and testing (80/20) sets. The training set is decomposed into trend 

and detrend components, with detrend training used to predict TWSA values. Testing evaluates the training 
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results, focusing on detrend data, as predictors do not indicate TWS trends, and the one-year data gap has 

minimal impact. Trends are reintroduced post-modeling using XGBoost (Lai et al., 2022). XGBoost is a tree-

boosting algorithm that utilizes an exceptional strategy for model optimization using the gradient method. 

XGBoost offers scalability, enabling it to handle large and intricate datasets effectively, delivering 

performance gains up to ten times compared to other tree-boosting algorithms (Chen & Guestrin, 2016). The 

trees built in XGBoost are interdependent (Ali et al., 2022). In hydrology fields, regression applications using 

the XGBoost algorithm are applied to reconstruct signals on time series (Ali et al., 2023; Sahour et al., 2020; 

Zhang et al., 2021). The XGBoost modeling can be set using the 'xgboost' package in R language (Chen et al., 

2020). We determined the XGBoost training parameters as follows: (1) eta = 0.05 (learning rate controller); 

(2) nrounds = 3000 (number of iterations); (3) gamma = 4 (the amount of loss reduction); (4) max_depth = 4 

(the depth of training trees); (5) min_child_weight = 4 (conservative model determination); and (6) alpha = 

lambda = 4 (regularization parameters). 

 

Third, the reconstructed GRACE/GRACE-FO product is assessed using Pearson's correlation coefficient (CC), 

Nash-Sutcliffe efficiency (NSE), and scaled root mean square error (RMSE*) indicators. Models with CC > 

0.8, RMSE* < 0.5, and NSE > 0.7 are considered effective (Gyawali et al., 2022).  

 

 
Figure 2. Research processing flowcharts. 

 

 
Results and Discussion 
 

1. Gap-filling Reconstruction and Uncertainties 

 

In evaluating the XGBoost model, the performance metrics of CC, NSE, and RMSE* were found to be 

(training/testing set) 0.978/0.943, 0.954/0.887, and 0.215/0.337, respectively. The scatter plot visualization of 

original and predicted detrended GRACE TWSA in centimeter unit is shown in Figure 3. Furthermore, Figure 

4 shows the grid-scale performance of the XGBoost model for both training and testing sets, evaluated using 
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CC, NSE, and RMSE* values for each pixel. In the testing set of 134 pixels across five basins, 126 pixels 

(94.03%) had "Very Strong" CC, 6 pixels (4.45%) "Strong," 1 pixel (0.75%) "Medium,", and 1 pixel (0.75%) 

showed negative CC. For NSE, 112 pixels (83.58%) were "Very Good," 14 pixels (10.45%) "Good," and 4 

pixels (2.99%) "Satisfactory," with 4 pixels (2.99%) "Unsatisfactory", and two of these being negative. For 

RMSE*, 106 pixels (79.10%) had RMSE* ≤ 0.5, 26 pixels (19.40%) were between 0.5 and 1.0, and 2 pixels 

(1.49%) were ≥ 1.0. 

   
(a)        (b) 

Figure 3. Scatter plot of original and predicted GRACE TWSA using XGBoost model on (a) training set and  

(b) testing set. 

 

 

 

 
Figure 4. XGBoost model’s performance at grid scale for training and testing sets. 
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While the XGBoost model demonstrates strong overall performance, the suboptimal results observed in 

specific pixels may be influenced by several factors. Firstly, leakage errors may have contributed to the 

unsatisfactory performance at these pixels, potentially exaggerating or reducing GRACE signal values along 

the coastal regions. Hydrological signals in the ocean are significantly smaller than those on land, leading to 

contamination between the two domains and affecting the accuracy of EWH (cm) quantification (Seo et al., 

2020; Zou & Jin, 2014). Additionally, uncertainties in input data, including GRACE TWSA and Noah GLDAS 

predictor variables, contribute to overall uncertainty. These uncertainties fluctuate due to variations in solid 

earth mass, snow cover, and the number of iterations used in the model. Furthermore, non-climatic parameters 

not included in the modeling, such as anthropogenic activities like groundwater irrigation, could influence 

TWSA but are not accounted for in this study. This limitation suggests that while hydrological variables 

enhance prediction accuracy in specific spatial and temporal scales, they may not sufficiently explain TWSA 

under significant anthropogenic impacts (Li et al., 2019; Seyoum et al., 2019). Lastly, the increasing frequency 

of extreme hydroclimatic events, such as those driven by El Niño and La Niña within the ENSO cycle, poses 

additional challenges to the model's performance (Wan et al., 2023). 

 

Building on these insights, we applied the XGBoost model with the following training parameters: (1) eta = 

0.05, (2) nrounds = 3000, (3) gamma = 4, (4) max_depth = 4, (5) min_child_weight = 4, and (6) alpha = lambda 

= 4, utilizing hydrological variables as predictors to reconstruct detrended and full-signal TWSA in EWH (cm) 

over an 11-month gap in GRACE satellite data. The results, depicted as blue time series lines in Figure 5, 

represent the average pixel values across training, testing, and the gap period, providing a comprehensive 

monthly TWSA. 

 

 
(a) 

 
(b) 

Figure 5. Signal reconstruction results: (a) detrended TWSA and (b) full TWSA signal using XGBoost model for the 

period of 2003-2022 over Kalimantan basins.  
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2. Precision Compared to Previous Studies 

 

To evaluate the modeling precision in this study, the predicted and reconstructed detrended TWSA signals 

were compared with the detrended TWSA signals from previous research by Li et al. (2021), using a 0.5° 

resolution and the CC metric. Figure 6 presents the monthly average detrended TWSA for each basin under 

investigation. In the figure, the red line represents the original GRACE data, the blue line depicts the predicted 

TWSA from this study (referred to as TWSADRec
), and the orange line indicates the predicted TWSA from Li 

et al. (2021) (referred to as TWSADLi
). Overall, including the gap months, TWSADRec

 and TWSADLi
 exhibit 

similar patterns, though with different amplitude variations. Notable discrepancies in amplitude are observed 

in the NKB basin, where the original TWSA and TWSADRec
 signals are underestimated from January to July 

2008, July 2009 to January 2010, August 2018 to January 2019, and January to June 2020, compared to 

TWSADLi
. Conversely, they are overestimated from June to October 2011, July 2012 to October 2013, and 

June to October 2014. Additionally, the NKB basin shows slightly lower CC and NSE and higher RMSE* for 

the original TWSA and TWSADRec
 compared to other basins, as shown in Figure 4. 

 

 
Figure 6. Time-series comparison of original GRACE TWSA (red line), this study’s prediction (blue line), and Li’s 

prediction (orange line) for the period 2003–2020 across five Kalimantan basins. 

 

In Figure 7, the quantitative relationships between Li's and this study's GRACE TWSA predictions relative to 

the original GRACE TWSA Mascon CRI product are depicted. The BAR basin exhibited the highest 

performance, with CC, NSE, and RMSE* values of 0.854, 0.561, and 0.661, respectively, in comparison to 

the original GRACE TWSA. Conversely, the NKB basin displayed the lowest scores, with a CC of 0.628, NSE 

of -0.455, and RMSE* of 1.203. The TWSA prediction of this study demonstrated a strong correlation with 

the original GRACE TWSA, as indicated by the metrics computed for training and testing predictions. In this 

regard, CKB exhibited the highest performance, with CC, NSE, and RMSE* values of 0.997, 0.994, and 0.080, 

respectively. In contrast, NKB displayed slightly lower performance, with CC, NSE, and RMSE* values of 

0.979, 0.884, and 0.340, respectively. Furthermore, the assessment of the relationship between Li's TWSA 

prediction and the outcome of this study resulted in varied metric scores, ranging from a CC of 0.639 for the 

NKB basin to a CC of 0.870 for the BAR basin, an NSE of 0.048 for the NKB basin to 0.635 for the BAR 

basin, and an RMSE* of 0.603 for BAR to 0.974 for the NKB basin. 
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Figure 7. Statistical metrics for Li’s study, this study, and the original GRACE TWSA across five Kalimantan basins. 

 

The variance in signal amplitude between Li's prediction results and the present study may arise from various 

factors.  

(1) Variations in input data are notable, as this study utilizes GRACE Mascon input data with a CRI filter 

developed by JPL. Conversely, Li et al. (2021) employed the Mascon solution generated by CSR 

without the CRI filter (Save et al., 2016), potentially leading to distinct estimations of TWSA trends 

(Jing et al., 2019). Additionally, this study incorporates P, ET, Q, SMSA, PCSA, N, and T as driving 

factors in TWSA prediction, while Li et al. (2021) utilized T (2 m), P, sea surface temperature (SST), 

17 climatological indices, SMS, Q, and ET.  

(2) Differences in modeling schemes exist between the two studies. This study applies the random splitting 

method to segregate input data into two sets over specific periods, employing XGB and RF algorithms 

for training. Conversely, Li et al. (2021) splits the data differently and utilized MLR, ANN, and ARX 

algorithms from their own framework. 

(3) Differences in research scale are evident; Li et al.'s (2020) global-scale study covers a broader and 

more intricate range of signals, especially in diverse climate regions, not observable at a local modeling 

scale (Zhou et al., 2017). 

 

 

Conclusions 
 

This research employs the Extreme Gradient Boosting (XGBoost) algorithm to reconstruct the Terrestrial 

Water Anomaly (TWSA) across five basins in Kalimantan using GRACE Mascon data. TWSA serves as the 

response variable, while the input variables comprise precipitation (P), evapotranspiration (ET), runoff (Q), 

soil moisture storage anomaly (SMSA), plant canopy storage anomaly (PCSA), Noah-derived TWSA (N), and 

temperature (T), each with a three-month time lag effect. The data, encompassing response variables and 

predictors, were detrended at a 0.5° resolution from 2003 to 2022, with an extended gap between July 2017 

and May 2018. The data was randomly partitioned into training (80%) and testing (20%) sets. The XGBoost 

model, with training parameters set as follows: (1) eta = 0.05; (2) nrounds = 3000; (3) gamma = 4; (4) 

max_depth = 4; (5) min_child_weight = 4; and (6) alpha = lambda = 4, achieved the evaluation metrics of CC, 

NSE, and RMSE* on the testing set, yielding 0.943, 0.887, and 0.337, respectively. At the pixel scale, strong 

CC and NSE performances were observed in 94.03% and 83.58% of cases, with 79.10% of pixels exhibiting 

RMSE < 0.5. Validation against Li's study (2021) demonstrated a CC of 0.639 for the NKB basin and 0.870 

for the BAR basin. This study recommends additional pre-processing to determine the strongest relationship 

between various GRACE Mascons global data products and TWS conditions in the study area. The analysis 

can be refined using the water budget equation, where the change in TWS equals the precipitation value minus 

CC NSE RMSE* CC NSE RMSE* CC NSE RMSE*

Li's vs. Original GRACE TWSA
This Study vs. Original GRACE

TWSA
Li's vs. This Study

BAR 0,854 0,561 0,661 0,995 0,988 0,111 0,870 0,635 0,603

CKB 0,830 0,530 0,684 0,997 0,994 0,080 0,842 0,587 0,641

KAP 0,775 0,579 0,647 0,992 0,980 0,139 0,789 0,610 0,623

MHK 0,783 0,275 0,850 0,987 0,961 0,197 0,816 0,491 0,712

NKB 0,628 -0,455 1,203 0,979 0,884 0,340 0,638 0,048 0,974

-0,600
-0,400
-0,200
0,000
0,200
0,400
0,600
0,800
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evapotranspiration and runoff. Meteorological data from local meteorological stations should enhance the 

precision of adding and subtracting TWS in the study area. 
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