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Abstract: The rapid urbanization in major cities like Jakarta significantly alters land cover, which in turn impacts
environmental thermal conditions and ecological quality. This research aims to analyze the spatial and temporal
dynamics of Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized
Difference Built-up Index (NDBI) in DKI Jakarta during the 2023—2024 period using combined data from the Landsat
8 and 9 satellites. Cross-validation analysis shows a very high level of consistency between the sensors, validating the
use of combined data for multi-temporal studies. Analysis methods include land cover classification, linear regression
analysis, and temporal change analysis. The results indicate a clear Urban Heat Island (UHI) phenomenon,
characterized by a strong positive correlation between LST and NDBI (R > 0.67) and a negative correlation between
LST and NDVI (R = -0.5). Temporal analysis indicates that thermal conditions in 2024 were generally lower than in
2023, and localized dynamics of land cover change were also identified. These findings affirm the fundamental
relationship between land cover composition and the urban microclimate, and underscore the importance of vegetation
in mitigating high temperatures in urban environment.
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Introduction

Global climate change is a major issue impacting human life, particularly in the environmental, agricultural,
and infrastructure sectors. One of its significant consequences is the rise in surface temperatures, which
necessitates accurate monitoring and analysis to support adaptation and mitigation planning. The analysis of
satellite imagery is a common method for obtaining Land Surface Temperature (LST) (Mashudi and Faisol,
2022). Satellite data provides information on the Earth's surface temperature with high spatial resolution and
broad area coverage (Li et al., 2013; Jiménez-Mufioz et al., 2014). Furthermore, remote sensing technology,
particularly Landsat satellite data, is widely applied in hydrology, meteorology, and surface energy balance
studies for LST estimation (Tang et al., 2015; Meng & Cheng, 2018).

Remote sensing technology, particularly data from the Landsat satellites, offers the capability to monitor Land
Surface Temperature (LST) consistently at a detailed spatial scale. Two key indicators frequently used to
analyze LST are the Normalized Difference Vegetation Index (NDVI), which represents vegetation density,
and built-up density, which can be estimated using indices such as the Normalized Difference Built-up Index
(NDBI) (Weng et al., 2004; Zha et al., 2003). Vegetation is known to have a cooling effect through
evapotranspiration, while buildings and other impervious surfaces absorb and retain heat.

The Landsat 8 and Landsat 9 satellites, part of the ongoing Landsat mission, provide critical multispectral data
for environmental analysis (USGS, 2021). Each is equipped with an Operational Land Imager (OLI) and a
Thermal Infrared Sensor (TIRS), enabling the estimation of Land Surface Temperature (LST) at high spatial
and temporal resolutions. Landsat 9, launched in 2021, continues the data record of Landsat 8 (2013-present)
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but features improved sensor sensitivity. A key enhancement is in its TIRS-2 instrument, which measures
surface temperature using Bands 10 and 11 (100 m resolution) while mitigating the stray light artifacts that
affected Landsat 8's TIRS data (Masek et al., 2020). Although the satellites share identical spectral band ranges,
Landsat 9 has a higher radiometric resolution of 14 bits compared to Landsat 8's 12 bits. This superior
resolution allows for a wider dynamic range, preventing sensor saturation over extremely bright or dark targets
and capturing finer radiometric detail (Xu et al., 2024).

Google Earth Engine (GEE) provides significant advantages as a platform for satellite image analysis,
primarily due to its large-scale, cloud-based processing capabilities and its extensive historical data archives
(Kumar and Mutanga, 2018). The platform's data catalog hosts a vast collection of geospatial data from
numerous satellites (Tamiminia et al., 2020), which is accessible via an Application Programming Interface
(API) that facilitates rapid prototyping and result visualization (Gorelick et al., 2017). Consequently, GEE's
cloud-based technology is widely employed for monitoring global climate and weather changes (Jannah &
Bioresita, 2023). Additionally, it can be utilized for surface temperature analysis using satellite imagery
available in near real-time (Prayogo, 2021).

Jakarta was selected as the study area due to its status as a megacity undergoing rapid urbanization, which has
resulted in massive land cover changes. The conversion of green open spaces into dense built-up areas causes
surface temperatures in urban areas to be higher than in the surrounding rural areas. The spatial dynamics
between vegetation (NDVI) and built-up areas (NDBI) in Jakarta are therefore highly relevant for analyzing
their correlation with the distribution of Land Surface Temperature (LST). Consequently, the accurate
monitoring of LST and the analysis of its relationship with urban (NDBI) and ecological (NDVI) indicators
are essential to support sustainable urban planning and spatial management policies.

This research utilizes the Google Earth Engine (GEE) platform for a comparative analysis of Land Surface
Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up
Index (NDBI) in the DKI Jakarta region using imagery from Landsat 8 and Landsat 9. The analysis first
evaluates the accuracy of the LST estimations by correlating them with in-situ air temperature data from
multiple observation stations. Subsequently, it assesses the consistency of the LST, NDVI, and NDBI products
derived from both satellites. Finally, the study identifies the correlations between LST and both NDBI and
NDVI using a combined Landsat 8 and 9 dataset. This research, therefore, offers insights into the effectiveness
of GEE for performing multi-sensor comparative analysis.

Data and Methods

This study focuses on the Jakarta city region, utilizing satellite imagery to derive Land Surface Temperature
(LST) and correlating it with in-situ daily maximum air temperature data. The selected ground-based air
temperature monitoring stations include Pantai Indah Kapuk and the Port of Tanjung Priok in North Jakarta;
Kemayoran in Central Jakarta; and Halim, TMII, and Cibubur in East Jakarta. A map of the study area and the
specific locations of the observation points is provided in Figure 1.

Map of the Study Area: Jakarta City
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Figure 1. Map of the study area.
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Landsat 8 and Landsat 9 Level-2 imagery data were obtained via Google Earth Engine. The images used were
acquired on multiple dates in 2023 and 2024 with a cloud cover of less than 20%. Daily maximum air
temperature data were obtained from the Indonesian Agency for Meteorology, Climatology, and Geophysics
(BMKG) for dates corresponding to the satellite image acquisitions. In addition, the maximum air temperature
between 10:00—11:00 AM was also recorded, which approximates the satellite's overpass time.

Land Surface Temperature (LST) was derived from the thermal band (Band 10) of the satellite imagery, where
the pixel values were converted to degrees Celsius according to the standard formula (Sampelan et al., 2024).

LST°C = (DN * M) + A — 273.15
Where:
LST°C = The final Land Surface Temperature in degrees Celsius.
DN = The Digital Number or raw pixel value from the image.
M (Scale Factor) = The multiplicative scaling factor, which is 0.00341802.
A (Offset) = The additive scaling factor, which is 149.

The Normalized Difference Vegetation Index (NDVI) is used to quantify vegetation greenness and is useful
for understanding vegetation density as well as assessing changes in plant health. This vegetation index is a
value derived from the comparison between the reflectance values of the red and near-infrared bands. NDVI
values range from -1 to +1, where high positive values (approaching +1) indicate dense and healthy vegetation,
values near zero indicate non-vegetated areas such as bare soil or rock, and negative values typically represent
water bodies, snow, or clouds.

For the processing in Google Earth Engine (GEE), the pixel values of Band 5 (NIR) and Band 4 (Red) were
first converted to surface reflectance before the index calculation (USGS, 2025; USGS, 2024).

p= (DN« M)+ A
Where:
p (Surface Reflectance) = The final, unitless surface reflectance value.
DN = The Digital Number or raw pixel value from the image.
M (Scale Factor) = The multiplicative scaling factor, which is 0.0000275.
A (Offset) = The additive scaling factor, which is -0.2.

The equation used to calculate the NDVI value is as follows (Putu Aryastana et al., 2023; Hardianto et al.,
2021) :

(NIR — RED)
NDVI = —————=
(NIR + RED)
Where:
NIR = Reflectance value of the near-infrared band (Band 5).
RED = Reflectance value of the red band (Band 4).
Table 1. NDVI (Normalized Difference Vegetation Index) classification scheme

Table 1. NDVI value classification for vegetation density (Laksono et al., 2020)

NDVI Value Classification
-1,00 sd 0,00 Non-Vegetated
0,00 sd 0,30 Slightly density
0,30 sd 0,60 Moderately density
0,60 sd 1,00 Highly density
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The Normalized Difference Built-up Index (NDBI) is a remote sensing index used to identify and map built-
up areas. This index works by utilizing the difference in spectral reflectance between the short-wave infrared
(SWIR) and near-infrared (NIR) channels. Built-up areas tend to reflect more energy in the SWIR waveband
compared to the NIR waveband. NDBI values range from -1 to +1, where high positive values indicate built-
up areas, while negative values indicate vegetation cover or water bodies.

The NDBI processing in Google Earth Engine (GEE) involved first converting the pixel values of Band 6
(SWIR 1) and Band 5 (NIR) to surface reflectance before applying the index formula (USGS, 2025; USGS,
2024).

p=(DN=x+«M+ A
Where:
p (Surface Reflectance) = The final, unitless surface reflectance value.
DN = The Digital Number or raw pixel value from the image.
M (Scale Factor) = The multiplicative scaling factor, which is 0.0000275.
A (Offset) = The additive scaling factor, which is -0.2.
The equation used to calculate the NDBI value is as follows (Gunawan et al., 2023):

(SWIR — NIR)
(SWIR + NIR)

NDBI =

Where:
SWIR = Reflectance value of the short wave infrared (band 6).
NIR = Reflectance value of the near infrared (band 5).
The classification scheme for built-up land (NDBI) is presented in Table 2.
Table 2. Built-up land value classification (NDBI) (Gunawan et al., 2023)

NDBI Value Classification
-1,0sd 0,0 Non-Built-up Area
0,0sd 0,1 Sparse Built-up
0,1sd0,2 Danse Built-up Area
0,2sd 0,3 Very Dense Building

The entire processing workflow for LST, NDVI, and NDBI was coded in JavaScript within the Google Earth
Engine code editor. The research methodology is illustrated in the flowchart in Figure 2.

> BMKG temperature In Situ Surface
observation station Temperature
———————————————————————————

= Cloud Masking and Filtering

| I -

. L »| Correlation Analysis
Landsat 9 1

= A

LANDSAT/LCO9/C02/T1_L2
v 4 4 .
1 / Band 4 / / Band 5 / / 8and 6 / / 8and 10 / 1 v

I - Analysis and
> Google Earth Engine [ | Conclusion

l l : =
‘ 5 Landsat 8 = NDVI NDBI LsT 1
LANDSAT/LCO8/C02/T1_L2 b Landsat 8 dan Landsat 9 Landsat 8 dan Landsat 9 Landsat 8 dan Landsat 9

| | =
I I

Processing in Google Earth Engine (GEE)

Figure 2. Flowchart of the research methodology.

y

96



Geoid Vol. 20, No. 2, 2025, 93-113

Pearson correlation analysis was used to measure the strength of the linear relationship between the estimated
Land Surface Temperature (LST) and the maximum air temperature, NDVI and NDBI. The Pearson correlation
coefficient (R) is calculated using the following formula (Gusmiarti et al., 2022):

R = nyxy — Xx Xy
Jn Xx2—(Ex)? Jn Xy - Cy)?

Where :
x = Observed value.y = Predicted value.n = Total number of samples.

The strength of the linear relationship is then interpreted based on the correlation coefficient classification
proposed by (Sugiyono, 2020), as shown below:

Table 3. Interpretation of the correlation coefficient

Coefficient Value Interpretation
0,00 -0,199 Very low
0,20 0,399 Low
0,40 —0,599 Medium
0,60 —0,799 Strong
0,80 1,000 Very strong

Where X and Y are the estimated LST value and the measured air temperature value, while n is the total
number of samples. The value of R ranges from —1 to +1, with an absolute value approaching 1 indicating a
strong linear relationship.

The coefficient of determination (R?) is calculated as the square of R (Mustafa, 2023) and represents the
proportion of variance in the dependent variable (LST) that can be explained by the independent variable (air
temperature). Its value ranges from O to 1.

R? = (R)? x 100%
Where :
R = Pearson's correlation coefficient.
R? = Coefficient of determination, representing the proportion of variance in Y predictable from X.

The accuracy of the LST estimation was measured by calculating the Root Mean Square Error (RMSE) and
the Mean Absolute Error (MAE). The RMSE is calculated as the square root of the average of the squared
differences between the estimated (Yi) and observed (X;) values, according to the formula (Fatkhuroyan &
TrinahWati, 2018):

n

1
RMSE = EZ(Xi — Yi)2

i=1
Where :

Xi = Observed value.

Yi = Predicted value.

n = Total number of samples.

A lower RMSE value indicates a smaller prediction error. Meanwhile, the Mean Absolute Error (MAE) is
calculated as the average of the absolute differences between the estimated and observed values, as shown in
the formula (Fatkhuroyan & TrinahWati, 2018) :

n
1
MAE = —ZlXi —vi|
ni=1
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Where :

Xi = Observed value.

Yi = Predicted value.

n = Total number of samples.
[-] = Absolute value.

The Mean Absolute Error (MAE) measures the average prediction error in the same units as the original data
and is less sensitive to extreme values.

Results and Discussion
Comparative Analysis of Landsat 8 and Landsat 9 LST with In-Situ Air Temperature

The linear regression analysis between Land Surface Temperature (LST) and in-situ air temperature revealed
spatially variable results across the observation sites. On average, Landsat 8 exhibited stronger correlations
than Landsat 9 (Figure 3a): the mean R-values for Landsat 8 were 0.8719 (with 10:00-11:00 AM air
temperature) and 0.7757 (with daily maximum), compared to 0.7335 and 0.6543 for Landsat 9, respectively.
These differences were more pronounced at specific locations. For instance, the Kemayoran station showed a
much stronger correlation for Landsat 8 (R = 0.9019) than for Landsat 9 (R = 0.4456) when compared with
the 10:00-11:00 AM air temperature. While the Halim and TMII stations consistently yielded strong
correlations for both satellites, the Kemayoran station was characterized by weaker correlations, especially for
Landsat 9. A consistent finding across all sites was that air temperature data from 10:00—11:00 AM, which is
closer to the satellite overpass time, correlated more strongly with LST than the daily maximum air temperature
data.

The pattern of the coefficient of determination (R?) mirrored that of the correlation coefficient (R), with
Landsat 8 generally showing higher values than Landsat 9 (Figure 3b). On average, the R? values for Landsat
8 were 0.7417 (with 10:00-11:00 AM temperature) and 0.7056 (with daily temperature), compared to 0.5652
and 0.4962 for Landsat 9. Despite the higher averages for Landsat 8, there was significant inter-site variability.
The Halim and TMII stations, for example, consistently showed high R? values, indicating that air temperature
is a strong predictor of LST in those areas. Conversely, the Kemayoran station exhibited low predictive power,
especially for Landsat 9, where air temperature explained only a small proportion of LST variance (R*=0.1986
with 10:00-11:00 AM data). A consistent finding for both satellites was that the 10:00-11:00 AM air
temperature data explained a greater proportion of LST variance than the daily maximum temperature data.

The comparative analysis revealed that spatially, Landsat 8 generally maintained a slightly stronger linear
relationship with in-situ air temperature than Landsat 9 across the study sites in Jakarta. This is reflected by
the higher average R and R? values observed for Landsat 8 with both types of air temperature data.
Additionally, the analysis confirmed that air temperature measurements closer to the satellite overpass time
(10:00-11:00 AM) yield a stronger and more consistent correlation with LST than daily maximum
temperatures. While estimation accuracy was found to be site-dependent, the use of daily data generally
produced slightly smaller errors.
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Figure 3. Graphs showing (a) the correlation coefficient and (b) the coefficient of determination between in-situ air
temperature and Landsat-derived LST.

A Comparative Analysis of LST, NDVI, and NDBI from Landsat 8 and Landsat 9

To ensure the reliability and continuity of the data, a consistency validation was performed on the Land Surface
Temperature (LST), NDVI, and NDBI data produced by the Landsat 8 and Landsat 9 satellites. This validation
was conducted through linear regression analysis using a random pixel sampling method across the entire study
area. The LST, NDVI, and NDBI values from both satellites were extracted at each sample point for statistical
analysis.

The validation results for the year 2023, as presented in Figure 4a, show a very high degree of consistency
between the two sensors. The correlation coefficient (R) reached 0.8955, indicating a statistically very strong
positive linear relationship. Furthermore, the coefficient of determination (R?) of 0.8019 implies that
approximately 80.19% of the variability in Landsat 8 LST data can be explained by the variability in Landsat
9 LST data. The resulting errors were also low, with a Root Mean Square Error (RMSE) of 1.94°C and a Mean
Absolute Error (MAE) of 1.60°C, signifying high accuracy and minimal measurement discrepancies between
the sensors.

For the 2024 period (Figure 4b), the LST data from both satellites remained consistent, although with a slightly
lower degree of agreement compared to the previous year. The correlation coefficient (R) was recorded at
0.8687, which still indicates a strong relationship and a similar pattern. However, the R? value decreased to
0.7546. An increase in error was also identified, with the RMSE and MAE rising to 2.70°C and 2.32°C,
respectively. Although this discrepancy is larger, the values remain within an acceptable range for comparative
LST studies.

Overall, this regression analysis confirms that the LST data from Landsat 8 and Landsat 9 are reliable and
consistent across both observation periods. This finding affirms that the data from both sensors are
interchangeable, which is crucial for multi-temporal analysis and long-term environmental monitoring. The
slight variation in consistency between the years implies that factors such as temporal atmospheric conditions
may have an influence, but this does not diminish the overall validity of using the combined data from both
satellites.
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Figure 4. Scatter plots comparing Land Surface Temperature (LST) from Landsat 8 and Landsat 9 for (a) 2023 and (b)
2024

Validation of the Normalized Difference Vegetation Index (NDVI) was conducted to test the degree of
consistency and agreement between the sensors on the Landsat 8 and Landsat 9 satellites. This analysis is
crucial to ensure that data from both missions can be combined for multi-temporal vegetation studies. The
validation results from the linear regression analysis for the years 2023 and 2024 are presented in Figure 5.
Overall, the findings show a very high and stable level of consistency across both observation periods.

For the year 2023 (Figure 5a), the analysis revealed a statistically very high degree of agreement. The
correlation coefficient (R) reached 0.9800, indicating a near-perfect positive linear relationship between the
NDVI data from both sensors. The high coefficient of determination (R?), at 0.9603, further reinforces this
finding, implying that 96.03% of the variability in Landsat 8's NDVI values can be explained by the variability
in Landsat 9's NDVI. Furthermore, the resulting errors were very low, with an RMSE of 0.03 and an MAE of
0.02. Given the theoretical range of NDVI is -1 to +1, this level of error can be considered negligible and
signifies nearly identical measurement accuracy.

The results for 2024 (Figure 5b) also demonstrated an exceptional level of consistency, in line with the findings
from the previous year. The correlation coefficient (R) remained very high at 0.9713, with an R? value of
0.9434. Although there was a slight increase in error (RMSE=0.04; MAE=0.03), the difference is marginal
and does not significantly reduce the degree of agreement between the sensors. This proves that the
performance of both sensors in measuring vegetation greenness remained stable across both time periods.

Based on this regression analysis, it can be concluded that the NDVI data produced by Landsat 8 and Landsat
9 are statistically almost indistinguishable. The consistently high correlation (R > 0.97) and low MAE (< 0.03)
provide strong evidence that the data from both satellites are interchangeable. This reliability allows for the
combination of data from both missions to build denser and more robust time-series datasets for vegetation
monitoring applications
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Figure 5. Scatter plots comparing NDVI from Landsat 8 and Landsat 9 for (a) 2023 and (b) 2024
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Validation of the Normalized Difference Built-up Index (NDBI) was conducted to evaluate the degree of
consistency and agreement between the data produced by the Landsat 8 and Landsat 9 satellites. This analysis
aims to ensure that both sensors provide comparable and reliable measurements of built-up areas for multi-
temporal analysis. The results of the linear regression analysis for the 2023 and 2024 periods are presented in
Figure 6.

For the year 2023 (Figure 6a), the analysis shows a statistically very high degree of agreement. The correlation
coefficient (R) was recorded at 0.9641, which indicates a very strong positive linear relationship. The
coefficient of determination (R?) reached 0.9295, meaning 92.95% of the variability in the NDBI data from
Landsat 8 can be explained by the variability in the data from Landsat 9. The resulting errors were also very
low, with a Root Mean Square Error (RMSE) of 0.03 and a Mean Absolute Error (MAE) of 0.02. Given the
theoretical range of NDBI is -1 to +1, this level of error can be considered practically insignificant.

The results for 2024 (Figure 6b) again showed an exceptional and even slightly stronger level of consistency.
The correlation coefficient (R) increased slightly to 0.9660 with an R? of 0.9332. While the MAE value
remained very low at 0.02, the RMSE was recorded at 0.04. These results confirm that the performance of both
sensors in measuring the distribution of built-up areas was very stable and consistent across both observation
periods.

Overall, it can be concluded that the NDBI data produced by Landsat 8 and Landsat 9 are highly reliable and
have a very high degree of agreement. The consistently high correlation (R > 0.96) and a MAE not exceeding
0.02 in both years provide strong evidence that there are no significant systematic differences between the two
sensors. Therefore, the NDBI data from both satellites can be used interchangeably, providing flexibility and
reliability in studies monitoring urban dynamics.
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Figure 6. Scatter plots comparing NDBI from Landsat 8 and Landsat 9 for (a) 2023 and (b) 2024

The cross validation analysis between the data produced by the Landsat 8 and Landsat 9 satellites convincingly
demonstrates a very high degree of consistency. The highest degree of statistical agreement was exceptionally
shown for the NDVI and NDBI indices. For both of these indices, consistent Pearson's correlation (R) values
above 0.96 and a very low Mean Absolute Error (MAE) (< 0.03) indicate that the data from the two satellites
are statistically almost indistinguishable. At this level, the error can be considered negligible, allowing the
NDVI and NDBI data from both sensors to be considered identical for most practical applications. On the other
hand, although the LST data also shows a strong correlation (R > 0.86), its degree of consistency is
quantitatively slightly below that of NDVI and NDBI. This is shown by a more measurable mean absolute
error (MAE), ranging from 1.6°C to 2.7°C, which indicates that minor yet persistent thermal variations exist
between the sensors.

The primary implication of this finding is that data from Landsat 8 and 9 can be combined and used
interchangeably. The demonstrated reliability, particularly for the NDVI and NDBI indices, strongly supports
the creation of denser and more accurate time-series datasets for studies on vegetation and urbanization
dynamics. Meanwhile, for applications involving high-precision thermal (LST) data, users are advised to be
aware of the potential for small variations that, although low, are inherent between the two sensors.
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Analysis of the Relationship between LST and NDVI Using Combined Landsat 8 and Landsat 9 Data

Based on the results of the cross validation analysis between the data generated by the Landsat 8 and Landsat
9 satellites, a very high degree of consistency was shown for the three derived products Land Surface
Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up
Index (NDBI) during the 2023 and 2024 observation periods. This forms the basis for combining and using
data from Landsat 8 and Landsat 9, which are subsequently used to produce the LST, NDVI, and NDBI
products.

To examine the quantitative relationship between surface thermal conditions and vegetation density, a linear
regression analysis was performed between Land Surface Temperature (LST) and the Normalized Difference
Vegetation Index (NDVI). The analysis results for the 2023 and 2024 periods are presented in Figure 7. In
general, the results from both observation periods consistently show a negative correlation between LST and
NDVI, which scientifically confirms that areas with higher surface temperatures tend to have lower vegetation
cover.

In 2023 (Figure 7a), the analysis showed a moderate negative correlation with a correlation coefficient (R) of
-0.5485. The coefficient of determination (R?) was recorded at 0.3009, indicating that approximately 30.1% of
the total variability in NDVI values within the study area can be explained by the variability in LST. The
relatively clustered distribution of data points around the regression line visually supports a fairly significant
relationship between these two variables.

For the 2024 period (Figure 7b), the negative relationship pattern between LST and NDVI was still identified,
but with a slightly weaker correlation strength. The correlation coefficient (R) decreased to -0.4588, while the
coefficient of determination (R?) also decreased to 0.2105. This implies that in 2024, only about 21.1% of the
NDVI variability can be attributed to changes in LST. The more scattered appearance of the data points
compared to the previous year visually confirms the weakening of the relationship between the two variables.

Overall, it can be concluded that there is a statistically significant inverse relationship between Land Surface
Temperature and vegetation density in the study area for both years. However, the strength of this relationship
is not perfect (R? values are far below 1), which implies that LST is not the sole factor controlling NDVI. Other
factors such as soil moisture, non-vegetated land cover types, and other biophysical characteristics also
contribute, making the LST-NDVI relationship complex and multidimensional (Weng, 2009). Furthermore,
the comparison between the years shows temporal variability, where the relationship between LST and NDVI
was recorded to be stronger in 2023 than in 2024.

2023 2024
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Figure 7. Scatter plots of LST and NDVI for (a) 2023 and (b) 2024 from combined Landsat 8 and Landsat 9 data.
Quantitative analysis of the relationship between Land Surface Temperature (LST) and the Normalized
Difference Vegetation Index (NDVI) for the 2023 and 2024 periods is presented in Tables 4 and 5. The data
in both tables consistently show a significant negative correlation between the level of vegetation density and

surface temperature. This phenomenon indicates the vital role of vegetation as a thermal regulator in the study
area.
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Based on the average LST data per vegetation class, a clear pattern was identified where an increase in
vegetation density is inversely proportional to a decrease in surface temperature. In 2024 (Table 5), the Dense
Vegetation class (NDVI > 0.60) recorded the lowest average LST at 38.74°C. Conversely, the Non-Vegetated
class (NDVI < 0.00) showed a much higher average LST of 43.89°C. This progressive decrease in temperature
occurs as the vegetation class category increases from sparse to dense.

An analysis of the temperature frequency distribution via histograms for each class reinforces this finding. The
histogram for the Non-Vegetated class shows a right-skewed distribution, indicating a concentration of pixels
with high LST values. As the vegetation class increases, the peak of the distribution in the histogram
systematically shifts to the left, towards lower LST values. For the Dense Vegetation class, the temperature
distribution appears more concentrated around a low average value, signifying cooler and more homogeneous
thermal conditions.

Furthermore, a comparison of the data between the years shows temporal variability in terms of both thermal
conditions and land cover composition. Thermal conditions in 2024 were generally lower than in 2023, as
evidenced by the decrease in average LST across all vegetation classes. Additionally, land cover change
dynamics were identified, wherein the area of the Dense Vegetation class increased from 36,141 km? in 2023
to 48,542 km? in 2024.

Thus, it can be concluded that vegetation density has a strong influence on the mitigation of land surface
temperature in the study area. LST and NDVI data from both observation periods convincingly prove that
areas with higher vegetation cover effectively maintain lower surface temperatures. The presence of
differences in thermal conditions and class areas between the years also implies the importance of multi-
temporal analysis to comprehensively understand the dynamics of the urban environment.

Table 4. Relationship between LST and NDVI according to NDVI Class for the Year 2023.

Classification Area (km?) Mean LST (°C) LST Histogram
W
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Table 5. Relationship between LST and NDVI according to NDVI Class for the Year 2024.

Classification Area (km?) Mean LST (°C) LST Histogram
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Analysis of the Relationship between LST and NDBI Using Combined Landsat 8 and Landsat 9 Data

To analyze the relationship between surface thermal conditions and the level of urban development, a linear
regression analysis was performed between Land Surface Temperature (LST) and the Normalized Difference
Built-up Index (NDBI). The quantitative analysis results for the 2023 and 2024 periods, processed from
combined Landsat 8 and 9 data, are presented in Figure 8. Overall, the analysis results from both observation
periods show a statistically significant positive correlation between LST and NDBI.

In 2023 (Figure 8a), this positive relationship was measured with a correlation coefficient (R) of 0.6966.
Meanwhile, in 2024 (Figure 8b), the recorded correlation was 0.6709. The positive correlation values in both
years empirically confirm that areas with higher NDBI values reflecting greater built-up density also tend to
have higher surface temperatures. Furthermore, the coefficient of determination (R?) in 2023 was 0.4853,
indicating that approximately 48.5% of the variability in NDBI values can be explained by the variability in
LST within the study area. The R? value for 2024 was slightly lower at 0.4502. The fact that the R? values do
not approach 1 implies that LST is not the only factor correlated with NDBI.

Based on this analysis, it can be concluded that there is a strong and stable positive relationship between the
increase in built-up area density (NDBI) and the increase in Land Surface Temperature (LST) across both
observation years.

104



Geoid Vol. 20, No. 2, 2025, 93-113

Tahun 2023
0.5 [y=0.0322x-1.4539
R=0.6966
0.3 R?=0.4853 °
5 01
S
0.1 30 35
0.3 ° .-
T e
0.5
LST (°C)
()

55

NDBI

Tahun 2024
05 Y=00332x-14324
R=0.6709
0.3 R?=0.4502
[ )
0.1 L)
° 1
0.1 39 350. 50
03 *% °
0.5
LST (°C)
(b)

55

Figure 8. Scatter plots of LST and NDBI for (a) 2023 and (b) 2024 from combined Landsat 8 and Landsat 9 data.

Tables 6 and 7 present the results of the quantitative analysis on the relationship between Land Surface
Temperature (LST) and the density of built-up areas (NDBI) for the 2023 and 2024 periods. The data presented
consistently show a positive correlation between an increase in building density and an increase in surface

temperature.

An in-depth analysis of both periods shows that the average LST tends to increase with the rise in NDBI class
from 'Non-Built-up Area' to 'Dense Built-up'. In 2024 (Table 7), the average LST increased from 41.07°C in
the '"Non-Built-up Area' class to 44.73°C in the 'Dense Built-up' class. This temperature increase is caused by
the thermal characteristics of urban materials such as concrete and asphalt, which have a higher capacity to
absorb and store solar radiation compared to natural surfaces. The temperature frequency distribution presented
in the histograms also visually confirms this trend, where the peak of the distribution shifts to the right (towards
higher temperatures) as building density increases.

Table 6. Relationship between LST and NDBI according to NDBI Class for the Year 2023.

Classification Area (km*>) Mean LST (°C) LST Histogram
Non-Built-up
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Table 7. Relationship between LST and NDBI according to NDBI Class for the Year 2024.
Classification Area (km?) Mean LST (°C) LST Histogram
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An interesting anomaly was identified in the "Very Dense Built-up' class (NDBI > 0.2). In both years, this class
recorded a slightly lower average LST compared to the 'Dense Built-up' class. This phenomenon indicates that
tall, dense buildings can create significant shadowing on the surfaces below, reducing direct exposure to solar
radiation. This condition can cause the surface temperature detected by the satellite to be lower compared to
areas with the same building density but with lower building heights (Weng, 2009).

A temporal comparison of the data between 2023 and 2024 shows that thermal conditions in 2024 were
consistently lower across all NDBI classes. Furthermore, there were changes in the area of each class,
indicating dynamics in the urban physical structure during the study period.

It can be concluded that the density of built-up areas is a dominant factor that increases land surface
temperature in the study area. However, at the highest density levels, urban geometry factors such as building
height and shadowing effects begin to play a role in modulating the surface temperature. This analysis
underscores the complexity of the relationship between LST and NDBI.

Analysis of LST, NDVI, and NDBI Using a Combined Landsat 8 and 9 Dataset

Figure 9 presents a visualization of Land Surface Temperature (LST) data in the study area for the years 2023
(a) and 2024 (b), along with frequency distribution histograms for each year, a map of the LST difference
between the two years (c), and a histogram of the difference values (d). This analysis aims to identify the
spatial distribution patterns of LST and to analyze its distributional characteristics and temporal changes.

The spatial LST maps in Figures 9a and 9b consistently show a similar temperature distribution pattern across
both observation years. Areas with the highest surface temperatures (displayed in red and orange) are
concentrated in the northern coastal region, the city center, and dense industrial areas, which include North
Jakarta, Central Jakarta, and parts of West and East Jakarta. Conversely, areas with relatively lower
temperatures (yellow and green) are predominantly found in the southern region (South Jakarta), which
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historically has more vegetation cover and green open spaces. Year-to-year changes in LST can be influenced
by many factors, including land cover change, weather conditions at the time of image acquisition, and seasonal
cycles.

The histograms for both years show an LST distribution that is generally normal but slightly right-skewed
(positive skew), with the frequency peak occurring around 40-45°C. This distribution shape implies that a
majority of the study area has high surface temperatures, which is characteristic of a dense urban environment.
A comparison between the two years reveals slight differences in the recorded maximum temperature ranges,
indicating the presence of annual thermal variability.

The temporal change analysis presented in the LST difference map (Figure 9c) shows locations that
experienced significant temperature changes. Areas marked in green represent cooling (2024 temperatures
were lower than 2023), while red indicates warming. This map allows for the identification of specific areas
that underwent an increase or decrease in surface temperature, which can be an indication of significant
environmental changes, such as the conversion of green space to built-up areas or vice versa. The spatial extent
of high surface temperature zones is continually expanding, concurrent with the conversion of land into built-
up areas (Danniswari et al., 2020). This transformation process leads to an increase in surface temperature,
which in turn contributes to a wider distribution of high thermal zones across the region. Figure 9d provides a
quantitative overview of this change. The shape of the histogram shows a frequency distribution centered with
a sharp peak to the left. This distribution shape implies that the majority of the study area experienced a
decrease in surface temperature, where 2023 was warmer than 2024.

Map of Land Surtace Temperaturs (LST) for 2023

Wap of Land Surface Temperature (L.ST) for 2024,

(a) (b)

Mesp of the Land Surface Tempersture Difference i
between 2023 and 2024, 3500

© (d

Figure 9. LST maps and histograms for (a) 2023 and (b) 2024, along with (c) the LST difference map for 20242023
and (d) the histogram of the LST difference, derived from combined Landsat 8 and Landsat 9 data
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Figure 10 presents a visualization of Normalized Difference Vegetation Index (NDVI) data in the study area
for 2023 (a) and 2024 (b), along with frequency distribution histograms for each year. It also specifically maps
the difference in NDVI values between 2024 and 2023 (¢), while (d) displays the histogram of the distribution
of these difference values. This analysis aims to identify the spatial distribution patterns of vegetation density
and to understand its general distributional characteristics.

The spatial NDVI map in Figure 10a shows the distribution of NDVI values in the Jakarta region in 2023. The
color scale on the map indicates the level of vegetation greenness, where dark green represents areas with very
high and healthy vegetation density, while yellow or light green shows sparser vegetation or areas with non-
vegetated cover. It is observed that most of the Jakarta region is dominated by green colors, indicating the
presence of vegetation, albeit with varying levels of density. Areas with high NDVI (dark green) tend to be
concentrated in green open spaces, city parks, and suburban areas that still have open land. The 2024 NDVI
map (Figure 10b) shows a similar distribution pattern to 2023. However, fluctuations in NDVI values can
occur due to seasonal changes, rainfall, or development activities that reduce vegetation cover. This map
reveals several micro-level changes at various locations, which may indicate environmental changes within
the one-year period.

The histograms for both years show a right-skewed (positive skew) distribution of NDVI values, with the
frequency peak occurring in the 0.2 to 0.4 range. This distribution shape implies that most of the study area is
covered by vegetation of low to moderate density. The distribution's tail extending towards higher NDVI
values indicates the presence of areas with denser vegetation cover, although their extent is not dominant.

The NDVI difference map (Figure 10c) shows the dynamics of vegetation change, which vary spatially. Areas
marked in green represent an increase in ND VI values, indicating an increase in greenness or vegetation density
in 2024 compared to 2023. Conversely, areas in blue or pale yellow show minimal change or a slight decrease
in greenness. The histogram in Figure 10d provides a quantitative overview of the distribution of the overall
NDVI difference. The shape of the histogram shows a very sharp and narrow peak centered on an NDVI range
close to zero. This indicates that the majority of pixels in the study area did not experience significant changes
in greenness between 2023 and 2024.

Map of NV for 2023

Map of NDVI for 202¢

=1

(a) (®)
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Figure 10. NDVI maps and histograms for (a) 2023 and (b) 2024, along with (c) the NDVI difference map for 2024—
2023 and (d) the histogram of the NDVI difference, derived from combined Landsat 8 and Landsat 9 data

High-resolution satellite imagery from Google Earth was used to corroborate the land cover conditions before
and after the observed changes. The study area in 2023 (Figures 11b) was predominantly comprised of a water
body and some open land, both of which are land cover types that naturally produce low NDVI values. This is
because water absorbs a majority of near-infrared (NIR) radiation, while open land is characterized by an
absence of photosynthetic activity. In contrast, the imagery acquired in 2024 (Figures 1lc) shows a
fundamental conversion to vegetative cover. This transformation, presumably caused by land reclamation
activities, resulted in the growth of pioneer vegetation like grass, which possesses high NIR reflectance.
Consequently, the measured quantitative increase in the NDVI is directly attributable to the conversion of non-
vegetated land cover to vegetated land cover.

< > 92023

(b)

Figure 11. (a) NDVI difference map for 2024-2023 (b) Google Earth satellite imagery in 2023 (c) Google Earth satellite
imagery in 2024

Figure 12 presents the spatial analysis and frequency distribution of the Normalized Difference Built-up Index
(NDBI) in the study area. Figures 12a and 12b specifically map the NDBI conditions for 2023 and 2024,
respectively; Figure 12¢ maps the difference in NDBI values between the two years, while Figure 12d displays
the histogram of the distribution of these difference values. This analysis aims to identify changes in built-up
areas spatially and to understand the general characteristics of land cover in the study area.

The spatial NDBI map in Figure 12a shows the NDBI distribution in the DKI Jakarta region in 2023. The color
scale on the map indicates the level of building density, where red shows very high building density and green
shows areas with low building density or vegetation cover. Most areas in Central Jakarta, West Jakarta, and
North Jakarta, especially in the urban core areas, are dominated by high NDBI values (red), which reflects the
high building density. This is in line with Jakarta's characteristics as a megapolitan with rapid infrastructure
development. Figure 12b shows a similar distribution pattern to 2023. However, with ongoing development
and land cover changes, several micro-level changes are visible at various locations. An increase in the
intensity of the red color in some areas indicates an increase in building density, either through the construction
of new buildings or the conversion of non-built-up land into built-up areas.
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The histograms accompanying both maps show the frequency distribution of NDBI values throughout the
study area. In both 2023 and 2024, the histograms show a right-skewed distribution, indicating that most pixels
have low NDBI values. This could be due to the presence of non-built-up areas such as water bodies (Jakarta
Bay), green open spaces, and suburban areas that still have vegetation cover.

The NDBI difference map (Figure 12¢) shows that there were changes in building density that varied spatially.
Areas marked in green represent an increase in NDBI values, which indicates an increase in building density
or new development in 2024 compared to 2023. Conversely, areas in blue or pale yellow show minimal change
or a slight decrease in building density. This map allows for the identification of specific locations that have
undergone intensive urbanization within a one-year period, which can be targets for spatial planning policy
interventions. The shape of the histogram in Figure 12d shows a very sharp and narrow peak centered on an
NDBI range close to zero. This indicates that the majority of pixels in the study area did not experience
significant changes in building density between 2023 and 2024.

A.........lnm|||||H“NH“HH“\
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Figure 12. NDBI maps and histograms for (a) 2023 and (b) 2024, along with (c) the NDBI difference map for 2024—
2023 and (d) the histogram of the NDBI difference, derived from combined Landsat 8 and Landsat 9 data

A diachronic analysis of high resolution Google Earth imagery was conducted to validate the anomalous
increase in NDBI. In 2023 (Figure 13b), the site was a land cover mosaic composed of green open space (dense
vegetation) and a small fraction of built-up areas. Biophysically, the high proportion of vegetation caused an
attenuation (weakening) of the NDBI value, as the strong Near Infrared (NIR) reflectance from the canopy
masked the spectral response of existing impermeable surfaces. However, a massive land cover transformation
occurred in 2024 (Figure 13c¢). Land clearing activities replaced most of the vegetation with new infrastructure
development. This newly formed surface, dominated by construction materials, inherently possesses high NIR
absorption and high Short Wave Infrared (SWIR) reflectance properties. This mechanism the shift in spectral
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response from NIR dominance (vegetation) to SWIR dominance (buildings) quantitatively explains the spike
in NDBI values at the location.

<> a0
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Figure 13. (a) NDBI difference map for 2024-2023 (b) Google Earth satellite imagery in 2023 (c) Google Earth satellite
imagery in 2024
Conclusions

Overall, the research results show that the Land Surface Temperature (LST), Normalized Difference
Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI) data produced by the Landsat 8
and Landsat 9 satellites exhibit a very high degree of consistency and agreement (R > 0.86 for LST; R > 0.97
for NDVI and NDBI). This proves that the data from both missions are reliable and can be combined, thereby
enabling multi-temporal analysis with a higher temporal resolution.

There are significant and opposing correlations between surface thermal conditions and land cover types of
vegetation and built-up areas. A strong negative correlation was found between LST and NDVI, where an
increase in vegetation density effectively lowers the land surface temperature. Conversely, there is a strong
positive correlation between LST and NDBI, which proves that an increase in building density is a dominant
factor triggering a rise in surface temperature.

The temporal analysis between 2023 and 2024 indicates dynamics in both thermal conditions and land cover
composition. In general, thermal conditions in 2024 were lower than in 2023 across all land cover classes.
Although massive land cover change was not detected, the analysis of the NDVI and NDBI differences
indicates the presence of localized micro-changes, such as increases in vegetation and building density at
specific points.

Urban geometry at the highest levels of building density shows a complex influence on LST. An anomaly was
identified where the 'Very Dense Built-up' class has a slightly lower average temperature than the 'Dense Built-
up' class. This phenomenon is presumably caused by the shading effect of tall buildings, which reduces the
surface's exposure to solar radiation, affirming that in addition to land cover composition, the three-
dimensional structure of the city also plays a role in modulating the microclimate.
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