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Abstract: The rapid urbanization in major cities like Jakarta significantly alters land cover, which in turn impacts 

environmental thermal conditions and ecological quality. This research aims to analyze the spatial and temporal 

dynamics of Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized 

Difference Built-up Index (NDBI) in DKI Jakarta during the 2023–2024 period using combined data from the Landsat 

8 and 9 satellites. Cross-validation analysis shows a very high level of consistency between the sensors, validating the 

use of combined data for multi-temporal studies. Analysis methods include land cover classification, linear regression 

analysis, and temporal change analysis. The results indicate a clear Urban Heat Island (UHI) phenomenon, 

characterized by a strong positive correlation between LST and NDBI (R > 0.67) and a negative correlation between 

LST and NDVI (R ≈ -0.5). Temporal analysis indicates that thermal conditions in 2024 were generally lower than in 

2023, and localized dynamics of land cover change were also identified. These findings affirm the fundamental 

relationship between land cover composition and the urban microclimate, and underscore the importance of vegetation 

in mitigating high temperatures in urban environment.  
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Introduction  

Global climate change is a major issue impacting human life, particularly in the environmental, agricultural, 

and infrastructure sectors. One of its significant consequences is the rise in surface temperatures, which 

necessitates accurate monitoring and analysis to support adaptation and mitigation planning. The analysis of 

satellite imagery is a common method for obtaining Land Surface Temperature (LST) (Mashudi and Faisol, 

2022). Satellite data provides information on the Earth's surface temperature with high spatial resolution and 

broad area coverage (Li et al., 2013; Jiménez-Muñoz et al., 2014). Furthermore, remote sensing technology, 

particularly Landsat satellite data, is widely applied in hydrology, meteorology, and surface energy balance 

studies for LST estimation (Tang et al., 2015; Meng & Cheng, 2018). 

Remote sensing technology, particularly data from the Landsat satellites, offers the capability to monitor Land 

Surface Temperature (LST) consistently at a detailed spatial scale. Two key indicators frequently used to 

analyze LST are the Normalized Difference Vegetation Index (NDVI), which represents vegetation density, 

and built-up density, which can be estimated using indices such as the Normalized Difference Built-up Index 

(NDBI) (Weng et al., 2004; Zha et al., 2003). Vegetation is known to have a cooling effect through 

evapotranspiration, while buildings and other impervious surfaces absorb and retain heat. 

The Landsat 8 and Landsat 9 satellites, part of the ongoing Landsat mission, provide critical multispectral data 

for environmental analysis (USGS, 2021). Each is equipped with an Operational Land Imager (OLI) and a 

Thermal Infrared Sensor (TIRS), enabling the estimation of Land Surface Temperature (LST) at high spatial 

and temporal resolutions. Landsat 9, launched in 2021, continues the data record of Landsat 8 (2013-present) 
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but features improved sensor sensitivity. A key enhancement is in its TIRS-2 instrument, which measures 

surface temperature using Bands 10 and 11 (100 m resolution) while mitigating the stray light artifacts that 

affected Landsat 8's TIRS data (Masek et al., 2020). Although the satellites share identical spectral band ranges, 

Landsat 9 has a higher radiometric resolution of 14 bits compared to Landsat 8's 12 bits. This superior 

resolution allows for a wider dynamic range, preventing sensor saturation over extremely bright or dark targets 

and capturing finer radiometric detail (Xu et al., 2024). 

Google Earth Engine (GEE) provides significant advantages as a platform for satellite image analysis, 

primarily due to its large-scale, cloud-based processing capabilities and its extensive historical data archives 

(Kumar and Mutanga, 2018). The platform's data catalog hosts a vast collection of geospatial data from 

numerous satellites (Tamiminia et al., 2020), which is accessible via an Application Programming Interface 

(API) that facilitates rapid prototyping and result visualization (Gorelick et al., 2017). Consequently, GEE's 

cloud-based technology is widely employed for monitoring global climate and weather changes (Jannah & 

Bioresita, 2023). Additionally, it can be utilized for surface temperature analysis using satellite imagery 

available in near real-time (Prayogo, 2021).   

Jakarta was selected as the study area due to its status as a megacity undergoing rapid urbanization, which has 

resulted in massive land cover changes. The conversion of green open spaces into dense built-up areas causes 

surface temperatures in urban areas to be higher than in the surrounding rural areas. The spatial dynamics 

between vegetation (NDVI) and built-up areas (NDBI) in Jakarta are therefore highly relevant for analyzing 

their correlation with the distribution of Land Surface Temperature (LST). Consequently, the accurate 

monitoring of LST and the analysis of its relationship with urban (NDBI) and ecological (NDVI) indicators 

are essential to support sustainable urban planning and spatial management policies. 

This research utilizes the Google Earth Engine (GEE) platform for a comparative analysis of Land Surface 

Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up 

Index (NDBI) in the DKI Jakarta region using imagery from Landsat 8 and Landsat 9. The analysis first 

evaluates the accuracy of the LST estimations by correlating them with in-situ air temperature data from 

multiple observation stations. Subsequently, it assesses the consistency of the LST, NDVI, and NDBI products 

derived from both satellites. Finally, the study identifies the correlations between LST and both NDBI and 

NDVI using a combined Landsat 8 and 9 dataset. This research, therefore, offers insights into the effectiveness 

of GEE for performing multi-sensor comparative analysis. 

 

Data and Methods  

This study focuses on the Jakarta city region, utilizing satellite imagery to derive Land Surface Temperature 

(LST) and correlating it with in-situ daily maximum air temperature data. The selected ground-based air 

temperature monitoring stations include Pantai Indah Kapuk and the Port of Tanjung Priok in North Jakarta; 

Kemayoran in Central Jakarta; and Halim, TMII, and Cibubur in East Jakarta. A map of the study area and the 

specific locations of the observation points is provided in Figure 1. 

 

Figure 1. Map of the study area. 
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Landsat 8 and Landsat 9 Level-2 imagery data were obtained via Google Earth Engine. The images used were 

acquired on multiple dates in 2023 and 2024 with a cloud cover of less than 20%. Daily maximum air 

temperature data were obtained from the Indonesian Agency for Meteorology, Climatology, and Geophysics 

(BMKG) for dates corresponding to the satellite image acquisitions. In addition, the maximum air temperature 

between 10:00–11:00 AM was also recorded, which approximates the satellite's overpass time. 

Land Surface Temperature (LST) was derived from the thermal band (Band 10) of the satellite imagery, where 

the pixel values were converted to degrees Celsius according to the standard formula (Sampelan et al., 2024). 

𝐿𝑆𝑇°C =  (𝐷𝑁 ∗  𝑀) +  𝐴 −  273.15 

Where:  

LST°C = The final Land Surface Temperature in degrees Celsius. 

DN = The Digital Number or raw pixel value from the image. 

M  (Scale Factor) = The multiplicative scaling factor, which is 0.00341802. 

A (Offset) = The additive scaling factor, which is 149. 

The Normalized Difference Vegetation Index (NDVI) is used to quantify vegetation greenness and is useful 

for understanding vegetation density as well as assessing changes in plant health. This vegetation index is a 

value derived from the comparison between the reflectance values of the red and near-infrared bands. NDVI 

values range from -1 to +1, where high positive values (approaching +1) indicate dense and healthy vegetation, 

values near zero indicate non-vegetated areas such as bare soil or rock, and negative values typically represent 

water bodies, snow, or clouds. 

For the processing in Google Earth Engine (GEE), the pixel values of Band 5 (NIR) and Band 4 (Red) were 

first converted to surface reflectance before the index calculation (USGS, 2025; USGS, 2024). 

𝜌 =  (𝐷𝑁 ∗  𝑀) +  𝐴  

Where:  

ρ (Surface Reflectance) = The final, unitless surface reflectance value. 

DN = The Digital Number or raw pixel value from the image. 

M  (Scale Factor) = The multiplicative scaling factor, which is 0.0000275. 

A (Offset) = The additive scaling factor, which is -0.2. 

The equation used to calculate the NDVI value is as follows (Putu Aryastana et al., 2023; Hardianto et al., 

2021)  :  

NDVI =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

Where:  

𝑁𝐼𝑅 = Reflectance value of the near-infrared band (Band 5). 

𝑅𝐸𝐷 = Reflectance value of the red band (Band 4). 

Table 1. NDVI (Normalized Difference Vegetation Index) classification scheme 

Table 1. NDVI value classification for vegetation density (Laksono et al., 2020) 

NDVI Value Classification 

-1,00 sd 0,00 Non-Vegetated 

0,00 sd 0,30 Slightly density 

0,30 sd 0,60 Moderately density 

0,60 sd 1,00 Highly density 
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The Normalized Difference Built-up Index (NDBI) is a remote sensing index used to identify and map built-

up areas. This index works by utilizing the difference in spectral reflectance between the short-wave infrared 

(SWIR) and near-infrared (NIR) channels. Built-up areas tend to reflect more energy in the SWIR waveband 

compared to the NIR waveband. NDBI values range from -1 to +1, where high positive values indicate built-

up areas, while negative values indicate vegetation cover or water bodies. 

The NDBI processing in Google Earth Engine (GEE) involved first converting the pixel values of Band 6 

(SWIR 1) and Band 5 (NIR) to surface reflectance before applying the index formula (USGS, 2025; USGS, 

2024).   

𝜌 =  (𝐷𝑁 ∗  𝑀) +  𝐴 

Where:  

ρ (Surface Reflectance) = The final, unitless surface reflectance value. 

DN = The Digital Number or raw pixel value from the image. 

M  (Scale Factor) = The multiplicative scaling factor, which is 0.0000275. 

A (Offset) = The additive scaling factor, which is -0.2.  

The equation used to calculate the NDBI value is as follows (Gunawan et al., 2023):  

𝑁𝐷𝐵𝐼 =
(𝑆𝑊𝐼𝑅 −  𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 +  𝑁𝐼𝑅)
 

Where:  

SWIR = Reflectance value of the short wave infrared (band 6). 

N𝐼𝑅 = Reflectance value of the near infrared (band 5). 

The classification scheme for built-up land (NDBI) is presented in Table 2. 

Table 2. Built-up land value classification (NDBI) (Gunawan et al., 2023) 

NDBI Value Classification 

-1,0 sd 0,0 Non-Built-up Area 

0,0 sd 0,1 Sparse Built-up 

0,1 sd 0,2 Danse Built-up Area 

0,2 sd 0,3 Very Dense Building 

 

The entire processing workflow for LST, NDVI, and NDBI was coded in JavaScript within the Google Earth 

Engine code editor. The research methodology is illustrated in the flowchart in Figure 2. 

 

                                                      Processing in Google Earth Engine (GEE)  

Figure 2. Flowchart of the research methodology. 



Geoid Vol. 20, No. 2, 2025, 93-113 
 

97 

 

Pearson correlation analysis was used to measure the strength of the linear relationship between the estimated 

Land Surface Temperature (LST) and the maximum air temperature, NDVI and NDBI. The Pearson correlation 

coefficient (R) is calculated using the following formula (Gusmiarti et al., 2022):  

R =
𝑛 ∑ 𝑥 𝑦 − ∑ 𝑥 ∑ 𝑦            

√𝑛 ∑ 𝑥2− (∑ 𝑥)2     √𝑛 ∑ 𝑦2− (∑ 𝑦)2 
 

Where : 

x  = Observed value.y  = Predicted value.n   = Total number of samples. 

The strength of the linear relationship is then interpreted based on the correlation coefficient classification 

proposed by (Sugiyono, 2020), as shown below:  

Table 3. Interpretation of the correlation coefficient 

Coefficient Value Interpretation 

0,00 –0,199 Very low 

0,20 –0,399 Low 

0,40 –0,599 Medium 

0,60 –0,799 Strong 

0,80 –1,000 Very strong 

 

Where X and Y are the estimated LST value and the measured air temperature value, while n is the total 

number of samples. The value of R ranges from –1 to +1, with an absolute value approaching 1 indicating a 

strong linear relationship. 

The coefficient of determination (R²) is calculated as the square of R (Mustafa, 2023) and represents the 

proportion of variance in the dependent variable (LST) that can be explained by the independent variable (air 

temperature). Its value ranges from 0 to 1. 

𝑅2 = (𝑅)2 × 100% 

Where : 

R  = Pearson's correlation coefficient. 

R2 = Coefficient of determination, representing the proportion of variance in Y predictable from X. 

The accuracy of the LST estimation was measured by calculating the Root Mean Square Error (RMSE) and 

the Mean Absolute Error (MAE). The RMSE is calculated as the square root of the average of the squared 

differences between the estimated (Yᵢ) and observed (Xᵢ) values, according to the formula (Fatkhuroyan & 

TrinahWati, 2018): 

RMSE = √
1

𝑛
∑(𝑋𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

  

Where : 

Xi  = Observed value.  

Yi  = Predicted value. 

n   = Total number of samples. 

A lower RMSE value indicates a smaller prediction error. Meanwhile, the Mean Absolute Error (MAE) is 

calculated as the average of the absolute differences between the estimated and observed values, as shown in 

the formula (Fatkhuroyan & TrinahWati, 2018) : 

MAE =
1

𝑛
∑|𝑋𝑖 − 𝑌𝑖|

𝑛

𝑖=1
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Where : 

Xi  = Observed value. 

Yi  = Predicted value. 

n   = Total number of samples. 

∣⋅∣  = Absolute value. 

The Mean Absolute Error (MAE) measures the average prediction error in the same units as the original data 

and is less sensitive to extreme values.  

 

Results and Discussion 

Comparative Analysis of Landsat 8 and Landsat 9 LST with In-Situ Air Temperature 

The linear regression analysis between Land Surface Temperature (LST) and in-situ air temperature revealed 

spatially variable results across the observation sites. On average, Landsat 8 exhibited stronger correlations 

than Landsat 9 (Figure 3a): the mean R-values for Landsat 8 were 0.8719 (with 10:00–11:00 AM air 

temperature) and 0.7757 (with daily maximum), compared to 0.7335 and 0.6543 for Landsat 9, respectively. 

These differences were more pronounced at specific locations. For instance, the Kemayoran station showed a 

much stronger correlation for Landsat 8 (R = 0.9019) than for Landsat 9 (R = 0.4456) when compared with 

the 10:00–11:00 AM air temperature. While the Halim and TMII stations consistently yielded strong 

correlations for both satellites, the Kemayoran station was characterized by weaker correlations, especially for 

Landsat 9. A consistent finding across all sites was that air temperature data from 10:00–11:00 AM, which is 

closer to the satellite overpass time, correlated more strongly with LST than the daily maximum air temperature 

data. 

The pattern of the coefficient of determination (R²) mirrored that of the correlation coefficient (R), with 

Landsat 8 generally showing higher values than Landsat 9 (Figure 3b). On average, the R² values for Landsat 

8 were 0.7417 (with 10:00–11:00 AM temperature) and 0.7056 (with daily temperature), compared to 0.5652 

and 0.4962 for Landsat 9. Despite the higher averages for Landsat 8, there was significant inter-site variability. 

The Halim and TMII stations, for example, consistently showed high R² values, indicating that air temperature 

is a strong predictor of LST in those areas. Conversely, the Kemayoran station exhibited low predictive power, 

especially for Landsat 9, where air temperature explained only a small proportion of LST variance (R² = 0.1986 

with 10:00-11:00 AM data). A consistent finding for both satellites was that the 10:00–11:00 AM air 

temperature data explained a greater proportion of LST variance than the daily maximum temperature data. 

The comparative analysis revealed that spatially, Landsat 8 generally maintained a slightly stronger linear 

relationship with in-situ air temperature than Landsat 9 across the study sites in Jakarta. This is reflected by 

the higher average R and R² values observed for Landsat 8 with both types of air temperature data. 

Additionally, the analysis confirmed that air temperature measurements closer to the satellite overpass time 

(10:00–11:00 AM) yield a stronger and more consistent correlation with LST than daily maximum 

temperatures. While estimation accuracy was found to be site-dependent, the use of daily data generally 

produced slightly smaller errors. 
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(a) 

 

(b) 

Figure 3. Graphs showing (a) the correlation coefficient and (b) the coefficient of determination between in-situ air 

temperature and Landsat-derived LST. 

 

A Comparative Analysis of LST, NDVI, and NDBI from Landsat 8 and Landsat 9 

To ensure the reliability and continuity of the data, a consistency validation was performed on the Land Surface 

Temperature (LST), NDVI, and NDBI data produced by the Landsat 8 and Landsat 9 satellites. This validation 

was conducted through linear regression analysis using a random pixel sampling method across the entire study 

area. The LST, NDVI, and NDBI values from both satellites were extracted at each sample point for statistical 

analysis. 

The validation results for the year 2023, as presented in Figure 4a, show a very high degree of consistency 

between the two sensors. The correlation coefficient (R) reached 0.8955, indicating a statistically very strong 

positive linear relationship. Furthermore, the coefficient of determination (R²) of 0.8019 implies that 

approximately 80.19% of the variability in Landsat 8 LST data can be explained by the variability in Landsat 

9 LST data. The resulting errors were also low, with a Root Mean Square Error (RMSE) of 1.94°C and a Mean 

Absolute Error (MAE) of 1.60°C, signifying high accuracy and minimal measurement discrepancies between 

the sensors. 

For the 2024 period (Figure 4b), the LST data from both satellites remained consistent, although with a slightly 

lower degree of agreement compared to the previous year. The correlation coefficient (R) was recorded at 

0.8687, which still indicates a strong relationship and a similar pattern. However, the R² value decreased to 

0.7546. An increase in error was also identified, with the RMSE and MAE rising to 2.70°C and 2.32°C, 

respectively. Although this discrepancy is larger, the values remain within an acceptable range for comparative 

LST studies. 

Overall, this regression analysis confirms that the LST data from Landsat 8 and Landsat 9 are reliable and 

consistent across both observation periods. This finding affirms that the data from both sensors are 

interchangeable, which is crucial for multi-temporal analysis and long-term environmental monitoring. The 

slight variation in consistency between the years implies that factors such as temporal atmospheric conditions 

may have an influence, but this does not diminish the overall validity of using the combined data from both 

satellites. 
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(a) (b) 

Figure 4. Scatter plots comparing Land Surface Temperature (LST) from Landsat 8 and Landsat 9 for (a) 2023 and (b) 

2024 

Validation of the Normalized Difference Vegetation Index (NDVI) was conducted to test the degree of 

consistency and agreement between the sensors on the Landsat 8 and Landsat 9 satellites. This analysis is 

crucial to ensure that data from both missions can be combined for multi-temporal vegetation studies. The 

validation results from the linear regression analysis for the years 2023 and 2024 are presented in Figure 5. 

Overall, the findings show a very high and stable level of consistency across both observation periods. 

For the year 2023 (Figure 5a), the analysis revealed a statistically very high degree of agreement. The 

correlation coefficient (R) reached 0.9800, indicating a near-perfect positive linear relationship between the 

NDVI data from both sensors. The high coefficient of determination (R²), at 0.9603, further reinforces this 

finding, implying that 96.03% of the variability in Landsat 8's NDVI values can be explained by the variability 

in Landsat 9's NDVI. Furthermore, the resulting errors were very low, with an RMSE of 0.03 and an MAE of 

0.02. Given the theoretical range of NDVI is -1 to +1, this level of error can be considered negligible and 

signifies nearly identical measurement accuracy. 

The results for 2024 (Figure 5b) also demonstrated an exceptional level of consistency, in line with the findings 

from the previous year. The correlation coefficient (R) remained very high at 0.9713, with an R² value of 

0.9434. Although there was a slight increase in error (RMSE=0.04; MAE=0.03), the difference is marginal 

and does not significantly reduce the degree of agreement between the sensors. This proves that the 

performance of both sensors in measuring vegetation greenness remained stable across both time periods. 

Based on this regression analysis, it can be concluded that the NDVI data produced by Landsat 8 and Landsat 

9 are statistically almost indistinguishable. The consistently high correlation (R > 0.97) and low MAE (≤ 0.03) 

provide strong evidence that the data from both satellites are interchangeable. This reliability allows for the 

combination of data from both missions to build denser and more robust time-series datasets for vegetation 

monitoring applications 

 

(a) 

 

(b) 

Figure 5. Scatter plots comparing NDVI from Landsat 8 and Landsat 9 for (a) 2023 and (b) 2024 
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Validation of the Normalized Difference Built-up Index (NDBI) was conducted to evaluate the degree of 

consistency and agreement between the data produced by the Landsat 8 and Landsat 9 satellites. This analysis 

aims to ensure that both sensors provide comparable and reliable measurements of built-up areas for multi-

temporal analysis. The results of the linear regression analysis for the 2023 and 2024 periods are presented in 

Figure 6. 

For the year 2023 (Figure 6a), the analysis shows a statistically very high degree of agreement. The correlation 

coefficient (R) was recorded at 0.9641, which indicates a very strong positive linear relationship. The 

coefficient of determination (R²) reached 0.9295, meaning 92.95% of the variability in the NDBI data from 

Landsat 8 can be explained by the variability in the data from Landsat 9. The resulting errors were also very 

low, with a Root Mean Square Error (RMSE) of 0.03 and a Mean Absolute Error (MAE) of 0.02. Given the 

theoretical range of NDBI is -1 to +1, this level of error can be considered practically insignificant. 

The results for 2024 (Figure 6b) again showed an exceptional and even slightly stronger level of consistency. 

The correlation coefficient (R) increased slightly to 0.9660 with an R² of 0.9332. While the MAE value 

remained very low at 0.02, the RMSE was recorded at 0.04. These results confirm that the performance of both 

sensors in measuring the distribution of built-up areas was very stable and consistent across both observation 

periods. 

Overall, it can be concluded that the NDBI data produced by Landsat 8 and Landsat 9 are highly reliable and 

have a very high degree of agreement. The consistently high correlation (R > 0.96) and a MAE not exceeding 

0.02 in both years provide strong evidence that there are no significant systematic differences between the two 

sensors. Therefore, the NDBI data from both satellites can be used interchangeably, providing flexibility and 

reliability in studies monitoring urban dynamics. 

 

(a) 

 

(b) 

Figure 6. Scatter plots comparing NDBI from Landsat 8 and Landsat 9 for (a) 2023 and (b) 2024 

The cross validation analysis between the data produced by the Landsat 8 and Landsat 9 satellites convincingly 

demonstrates a very high degree of consistency. The highest degree of statistical agreement was exceptionally 

shown for the NDVI and NDBI indices. For both of these indices, consistent Pearson's correlation (R) values 

above 0.96 and a very low Mean Absolute Error (MAE) (≤ 0.03) indicate that the data from the two satellites 

are statistically almost indistinguishable. At this level, the error can be considered negligible, allowing the 

NDVI and NDBI data from both sensors to be considered identical for most practical applications. On the other 

hand, although the LST data also shows a strong correlation (R > 0.86), its degree of consistency is 

quantitatively slightly below that of NDVI and NDBI. This is shown by a more measurable mean absolute 

error (MAE), ranging from 1.6°C to 2.7°C, which indicates that minor yet persistent thermal variations exist 

between the sensors. 

The primary implication of this finding is that data from Landsat 8 and 9 can be combined and used 

interchangeably. The demonstrated reliability, particularly for the NDVI and NDBI indices, strongly supports 

the creation of denser and more accurate time-series datasets for studies on vegetation and urbanization 

dynamics. Meanwhile, for applications involving high-precision thermal (LST) data, users are advised to be 

aware of the potential for small variations that, although low, are inherent between the two sensors. 
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Analysis of the Relationship between LST and NDVI Using Combined Landsat 8 and Landsat 9 Data  

Based on the results of the cross validation analysis between the data generated by the Landsat 8 and Landsat 

9 satellites, a very high degree of consistency was shown for the three derived products Land Surface 

Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up 

Index (NDBI) during the 2023 and 2024 observation periods. This forms the basis for combining and using 

data from Landsat 8 and Landsat 9, which are subsequently used to produce the LST, NDVI, and NDBI 

products. 

To examine the quantitative relationship between surface thermal conditions and vegetation density, a linear 

regression analysis was performed between Land Surface Temperature (LST) and the Normalized Difference 

Vegetation Index (NDVI). The analysis results for the 2023 and 2024 periods are presented in Figure 7. In 

general, the results from both observation periods consistently show a negative correlation between LST and 

NDVI, which scientifically confirms that areas with higher surface temperatures tend to have lower vegetation 

cover. 

In 2023 (Figure 7a), the analysis showed a moderate negative correlation with a correlation coefficient (R) of 

-0.5485. The coefficient of determination (R²) was recorded at 0.3009, indicating that approximately 30.1% of 

the total variability in NDVI values within the study area can be explained by the variability in LST. The 

relatively clustered distribution of data points around the regression line visually supports a fairly significant 

relationship between these two variables. 

For the 2024 period (Figure 7b), the negative relationship pattern between LST and NDVI was still identified, 

but with a slightly weaker correlation strength. The correlation coefficient (R) decreased to -0.4588, while the 

coefficient of determination (R²) also decreased to 0.2105. This implies that in 2024, only about 21.1% of the 

NDVI variability can be attributed to changes in LST. The more scattered appearance of the data points 

compared to the previous year visually confirms the weakening of the relationship between the two variables. 

Overall, it can be concluded that there is a statistically significant inverse relationship between Land Surface 

Temperature and vegetation density in the study area for both years. However, the strength of this relationship 

is not perfect (R² values are far below 1), which implies that LST is not the sole factor controlling NDVI. Other 

factors such as soil moisture, non-vegetated land cover types, and other biophysical characteristics also 

contribute, making the LST-NDVI relationship complex and multidimensional (Weng, 2009). Furthermore, 

the comparison between the years shows temporal variability, where the relationship between LST and NDVI 

was recorded to be stronger in 2023 than in 2024. 

 

(a) 

 

(b) 

Figure 7. Scatter plots of LST and NDVI for (a) 2023 and (b) 2024 from combined Landsat 8 and Landsat 9 data. 

Quantitative analysis of the relationship between Land Surface Temperature (LST) and the Normalized 

Difference Vegetation Index (NDVI) for the 2023 and 2024 periods is presented in Tables 4 and 5. The data 

in both tables consistently show a significant negative correlation between the level of vegetation density and 

surface temperature. This phenomenon indicates the vital role of vegetation as a thermal regulator in the study 

area. 
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Based on the average LST data per vegetation class, a clear pattern was identified where an increase in 

vegetation density is inversely proportional to a decrease in surface temperature. In 2024 (Table 5), the Dense 

Vegetation class (NDVI > 0.60) recorded the lowest average LST at 38.74°C. Conversely, the Non-Vegetated 

class (NDVI < 0.00) showed a much higher average LST of 43.89°C. This progressive decrease in temperature 

occurs as the vegetation class category increases from sparse to dense. 

An analysis of the temperature frequency distribution via histograms for each class reinforces this finding. The 

histogram for the Non-Vegetated class shows a right-skewed distribution, indicating a concentration of pixels 

with high LST values. As the vegetation class increases, the peak of the distribution in the histogram 

systematically shifts to the left, towards lower LST values. For the Dense Vegetation class, the temperature 

distribution appears more concentrated around a low average value, signifying cooler and more homogeneous 

thermal conditions. 

Furthermore, a comparison of the data between the years shows temporal variability in terms of both thermal 

conditions and land cover composition. Thermal conditions in 2024 were generally lower than in 2023, as 

evidenced by the decrease in average LST across all vegetation classes. Additionally, land cover change 

dynamics were identified, wherein the area of the Dense Vegetation class increased from 36,141 km² in 2023 

to 48,542 km² in 2024. 

Thus, it can be concluded that vegetation density has a strong influence on the mitigation of land surface 

temperature in the study area. LST and NDVI data from both observation periods convincingly prove that 

areas with higher vegetation cover effectively maintain lower surface temperatures. The presence of 

differences in thermal conditions and class areas between the years also implies the importance of multi-

temporal analysis to comprehensively understand the dynamics of the urban environment. 

Table 4. Relationship between LST and NDVI according to NDVI Class for the Year 2023. 

Classification Area (km²) Mean LST (°C) LST Histogram 

Non-Vegetated 

-1,00 - 0,00 
1,117 35,86 

 

Slightly density 

0,00 - 0,30 
378,781 46,09 

 

Moderately 

density 

0,30 - 0,60 

225,216 43,86 

 

Highly density 

0,60 - 1,00 
36,141 40,34 
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Table 5. Relationship between LST and NDVI according to NDVI Class for the Year 2024. 
Classification Area (km²) Mean LST (°C) LST Histogram 

Non-Vegetated 

-1,00 - 0,00 
1,193 33,89 

 

Slightly density 

0,00 - 0,30 
369,126 43,65 

 

Moderately 

density 

0,30 - 0,60 

222,394 41,87 

 

Highly density 

0,60 - 1,00 
48,542 38,74 

 

 

Analysis of the Relationship between LST and NDBI Using Combined Landsat 8 and Landsat 9 Data  

To analyze the relationship between surface thermal conditions and the level of urban development, a linear 

regression analysis was performed between Land Surface Temperature (LST) and the Normalized Difference 

Built-up Index (NDBI). The quantitative analysis results for the 2023 and 2024 periods, processed from 

combined Landsat 8 and 9 data, are presented in Figure 8. Overall, the analysis results from both observation 

periods show a statistically significant positive correlation between LST and NDBI. 

In 2023 (Figure 8a), this positive relationship was measured with a correlation coefficient (R) of 0.6966. 

Meanwhile, in 2024 (Figure 8b), the recorded correlation was 0.6709. The positive correlation values in both 

years empirically confirm that areas with higher NDBI values reflecting greater built-up density also tend to 

have higher surface temperatures. Furthermore, the coefficient of determination (R²) in 2023 was 0.4853, 

indicating that approximately 48.5% of the variability in NDBI values can be explained by the variability in 

LST within the study area. The R² value for 2024 was slightly lower at 0.4502. The fact that the R² values do 

not approach 1 implies that LST is not the only factor correlated with NDBI. 

Based on this analysis, it can be concluded that there is a strong and stable positive relationship between the 

increase in built-up area density (NDBI) and the increase in Land Surface Temperature (LST) across both 

observation years. 
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(a) 

 

(b) 

Figure 8. Scatter plots of LST and NDBI for (a) 2023 and (b) 2024 from combined Landsat 8 and Landsat 9 data. 

Tables 6 and 7 present the results of the quantitative analysis on the relationship between Land Surface 

Temperature (LST) and the density of built-up areas (NDBI) for the 2023 and 2024 periods. The data presented 

consistently show a positive correlation between an increase in building density and an increase in surface 

temperature. 

An in-depth analysis of both periods shows that the average LST tends to increase with the rise in NDBI class 

from 'Non-Built-up Area' to 'Dense Built-up'. In 2024 (Table 7), the average LST increased from 41.07°C in 

the 'Non-Built-up Area' class to 44.73°C in the 'Dense Built-up' class. This temperature increase is caused by 

the thermal characteristics of urban materials such as concrete and asphalt, which have a higher capacity to 

absorb and store solar radiation compared to natural surfaces. The temperature frequency distribution presented 

in the histograms also visually confirms this trend, where the peak of the distribution shifts to the right (towards 

higher temperatures) as building density increases. 

Table 6. Relationship between LST and NDBI according to NDBI Class for the Year 2023. 
Classification Area (km²) Mean LST (°C) LST Histogram 

Non-Built-up 

Area 

-1,0 - 0,0 

283,981 43.22 

 

Sparse Built-up 

0,0 - 0,1 
201,605 45.85 

 

Dense Built-up 

0,1 - 0,2 
150,564 47.05 

 

Very Dense 

Built-up 

0,2 - 0,3 

5,105 45.43 
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Table 7. Relationship between LST and NDBI according to NDBI Class for the Year 2024. 

Classification Area (km²) Mean LST (°C) LST Histogram 

Non-Built-up 

Area 

-1,0 - 0,0 

303,522 41,07 

 

Sparse Built-up 

0,0 - 0,1 
189,872 43,57 

 

Dense Built-up 

0,1 - 0,2 
143,461 44,73 

 

Very Dense 

Built-up 

0,2 - 0,3 

4,401 42,98 

 

An interesting anomaly was identified in the 'Very Dense Built-up' class (NDBI > 0.2). In both years, this class 

recorded a slightly lower average LST compared to the 'Dense Built-up' class. This phenomenon indicates that 

tall, dense buildings can create significant shadowing on the surfaces below, reducing direct exposure to solar 

radiation. This condition can cause the surface temperature detected by the satellite to be lower compared to 

areas with the same building density but with lower building heights (Weng, 2009). 

A temporal comparison of the data between 2023 and 2024 shows that thermal conditions in 2024 were 

consistently lower across all NDBI classes. Furthermore, there were changes in the area of each class, 

indicating dynamics in the urban physical structure during the study period. 

It can be concluded that the density of built-up areas is a dominant factor that increases land surface 

temperature in the study area. However, at the highest density levels, urban geometry factors such as building 

height and shadowing effects begin to play a role in modulating the surface temperature. This analysis 

underscores the complexity of the relationship between LST and NDBI. 

 

Analysis of LST, NDVI, and NDBI Using a Combined Landsat 8 and 9 Dataset  

Figure 9 presents a visualization of Land Surface Temperature (LST) data in the study area for the years 2023 

(a) and 2024 (b), along with frequency distribution histograms for each year, a map of the LST difference 

between the two years (c), and a histogram of the difference values (d). This analysis aims to identify the 

spatial distribution patterns of LST and to analyze its distributional characteristics and temporal changes. 

The spatial LST maps in Figures 9a and 9b consistently show a similar temperature distribution pattern across 

both observation years. Areas with the highest surface temperatures (displayed in red and orange) are 

concentrated in the northern coastal region, the city center, and dense industrial areas, which include North 

Jakarta, Central Jakarta, and parts of West and East Jakarta. Conversely, areas with relatively lower 

temperatures (yellow and green) are predominantly found in the southern region (South Jakarta), which 
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historically has more vegetation cover and green open spaces. Year-to-year changes in LST can be influenced 

by many factors, including land cover change, weather conditions at the time of image acquisition, and seasonal 

cycles. 

The histograms for both years show an LST distribution that is generally normal but slightly right-skewed 

(positive skew), with the frequency peak occurring around 40-45°C. This distribution shape implies that a 

majority of the study area has high surface temperatures, which is characteristic of a dense urban environment. 

A comparison between the two years reveals slight differences in the recorded maximum temperature ranges, 

indicating the presence of annual thermal variability. 

The temporal change analysis presented in the LST difference map (Figure 9c) shows locations that 

experienced significant temperature changes. Areas marked in green represent cooling (2024 temperatures 

were lower than 2023), while red indicates warming. This map allows for the identification of specific areas 

that underwent an increase or decrease in surface temperature, which can be an indication of significant 

environmental changes, such as the conversion of green space to built-up areas or vice versa. The spatial extent 

of high surface temperature zones is continually expanding, concurrent with the conversion of land into built-

up areas (Danniswari et al., 2020). This transformation process leads to an increase in surface temperature, 

which in turn contributes to a wider distribution of high thermal zones across the region. Figure 9d provides a 

quantitative overview of this change. The shape of the histogram shows a frequency distribution centered with 

a sharp peak to the left. This distribution shape implies that the majority of the study area experienced a 

decrease in surface temperature, where 2023 was warmer than 2024. 

 

 

(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 9. LST maps and histograms for (a) 2023 and (b) 2024, along with (c) the LST difference map for 2024–2023 

and (d) the histogram of the LST difference, derived from combined Landsat 8 and Landsat 9 data 



Geoid Vol. 20, No. 2, 2025, 93-113 
 

108 

 

Figure 10 presents a visualization of Normalized Difference Vegetation Index (NDVI) data in the study area 

for 2023 (a) and 2024 (b), along with frequency distribution histograms for each year. It also specifically maps 

the difference in NDVI values between 2024 and 2023 (c), while (d) displays the histogram of the distribution 

of these difference values. This analysis aims to identify the spatial distribution patterns of vegetation density 

and to understand its general distributional characteristics. 

The spatial NDVI map in Figure 10a shows the distribution of NDVI values in the Jakarta region in 2023. The 

color scale on the map indicates the level of vegetation greenness, where dark green represents areas with very 

high and healthy vegetation density, while yellow or light green shows sparser vegetation or areas with non-

vegetated cover. It is observed that most of the Jakarta region is dominated by green colors, indicating the 

presence of vegetation, albeit with varying levels of density. Areas with high NDVI (dark green) tend to be 

concentrated in green open spaces, city parks, and suburban areas that still have open land. The 2024 NDVI 

map (Figure 10b) shows a similar distribution pattern to 2023. However, fluctuations in NDVI values can 

occur due to seasonal changes, rainfall, or development activities that reduce vegetation cover. This map 

reveals several micro-level changes at various locations, which may indicate environmental changes within 

the one-year period. 

The histograms for both years show a right-skewed (positive skew) distribution of NDVI values, with the 

frequency peak occurring in the 0.2 to 0.4 range. This distribution shape implies that most of the study area is 

covered by vegetation of low to moderate density. The distribution's tail extending towards higher NDVI 

values indicates the presence of areas with denser vegetation cover, although their extent is not dominant. 

The NDVI difference map (Figure 10c) shows the dynamics of vegetation change, which vary spatially. Areas 

marked in green represent an increase in NDVI values, indicating an increase in greenness or vegetation density 

in 2024 compared to 2023. Conversely, areas in blue or pale yellow show minimal change or a slight decrease 

in greenness. The histogram in Figure 10d provides a quantitative overview of the distribution of the overall 

NDVI difference. The shape of the histogram shows a very sharp and narrow peak centered on an NDVI range 

close to zero. This indicates that the majority of pixels in the study area did not experience significant changes 

in greenness between 2023 and 2024. 

 

 

(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 10. NDVI maps and histograms for (a) 2023 and (b) 2024, along with (c) the NDVI difference map for 2024–

2023 and (d) the histogram of the NDVI difference, derived from combined Landsat 8 and Landsat 9 data 

High-resolution satellite imagery from Google Earth was used to corroborate the land cover conditions before 

and after the observed changes. The study area in 2023 (Figures 11b) was predominantly comprised of a water 

body and some open land, both of which are land cover types that naturally produce low NDVI values. This is 

because water absorbs a majority of near-infrared (NIR) radiation, while open land is characterized by an 

absence of photosynthetic activity. In contrast, the imagery acquired in 2024 (Figures 11c) shows a 

fundamental conversion to vegetative cover. This transformation, presumably caused by land reclamation 

activities, resulted in the growth of pioneer vegetation like grass, which possesses high NIR reflectance. 

Consequently, the measured quantitative increase in the NDVI is directly attributable to the conversion of non-

vegetated land cover to vegetated land cover. 

 

(a) 

 

(b) 

 

(c) 

Figure 11. (a) NDVI difference map for 2024–2023 (b) Google Earth satellite imagery in 2023 (c) Google Earth satellite 

imagery in 2024 

Figure 12 presents the spatial analysis and frequency distribution of the Normalized Difference Built-up Index 

(NDBI) in the study area. Figures 12a and 12b specifically map the NDBI conditions for 2023 and 2024, 

respectively; Figure 12c maps the difference in NDBI values between the two years, while Figure 12d displays 

the histogram of the distribution of these difference values. This analysis aims to identify changes in built-up 

areas spatially and to understand the general characteristics of land cover in the study area. 

The spatial NDBI map in Figure 12a shows the NDBI distribution in the DKI Jakarta region in 2023. The color 

scale on the map indicates the level of building density, where red shows very high building density and green 

shows areas with low building density or vegetation cover. Most areas in Central Jakarta, West Jakarta, and 

North Jakarta, especially in the urban core areas, are dominated by high NDBI values (red), which reflects the 

high building density. This is in line with Jakarta's characteristics as a megapolitan with rapid infrastructure 

development. Figure 12b shows a similar distribution pattern to 2023. However, with ongoing development 

and land cover changes, several micro-level changes are visible at various locations. An increase in the 

intensity of the red color in some areas indicates an increase in building density, either through the construction 

of new buildings or the conversion of non-built-up land into built-up areas. 
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The histograms accompanying both maps show the frequency distribution of NDBI values throughout the 

study area. In both 2023 and 2024, the histograms show a right-skewed distribution, indicating that most pixels 

have low NDBI values. This could be due to the presence of non-built-up areas such as water bodies (Jakarta 

Bay), green open spaces, and suburban areas that still have vegetation cover. 

The NDBI difference map (Figure 12c) shows that there were changes in building density that varied spatially. 

Areas marked in green represent an increase in NDBI values, which indicates an increase in building density 

or new development in 2024 compared to 2023. Conversely, areas in blue or pale yellow show minimal change 

or a slight decrease in building density. This map allows for the identification of specific locations that have 

undergone intensive urbanization within a one-year period, which can be targets for spatial planning policy 

interventions. The shape of the histogram in Figure 12d shows a very sharp and narrow peak centered on an 

NDBI range close to zero. This indicates that the majority of pixels in the study area did not experience 

significant changes in building density between 2023 and 2024.  

 

 

(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 12. NDBI maps and histograms for (a) 2023 and (b) 2024, along with (c) the NDBI difference map for 2024–

2023 and (d) the histogram of the NDBI difference, derived from combined Landsat 8 and Landsat 9 data 

A diachronic analysis of high resolution Google Earth imagery was conducted to validate the anomalous 

increase in NDBI. In 2023 (Figure 13b), the site was a land cover mosaic composed of green open space (dense 

vegetation) and a small fraction of built-up areas. Biophysically, the high proportion of vegetation caused an 

attenuation (weakening) of the NDBI value, as the strong Near Infrared (NIR) reflectance from the canopy 

masked the spectral response of existing impermeable surfaces. However, a massive land cover transformation 

occurred in 2024 (Figure 13c). Land clearing activities replaced most of the vegetation with new infrastructure 

development. This newly formed surface, dominated by construction materials, inherently possesses high NIR 

absorption and high Short Wave Infrared (SWIR) reflectance properties. This mechanism the shift in spectral 
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response from NIR dominance (vegetation) to SWIR dominance (buildings) quantitatively explains the spike 

in NDBI values at the location. 

 

(a) 

 

(b) 

 

(c) 

Figure 13. (a) NDBI difference map for 2024–2023 (b) Google Earth satellite imagery in 2023 (c) Google Earth satellite 

imagery in 2024 

Conclusions 

Overall, the research results show that the Land Surface Temperature (LST), Normalized Difference 

Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI) data produced by the Landsat 8 

and Landsat 9 satellites exhibit a very high degree of consistency and agreement (R > 0.86 for LST; R > 0.97 

for NDVI and NDBI). This proves that the data from both missions are reliable and can be combined, thereby 

enabling multi-temporal analysis with a higher temporal resolution.  

There are significant and opposing correlations between surface thermal conditions and land cover types of 

vegetation and built-up areas. A strong negative correlation was found between LST and NDVI, where an 

increase in vegetation density effectively lowers the land surface temperature. Conversely, there is a strong 

positive correlation between LST and NDBI, which proves that an increase in building density is a dominant 

factor triggering a rise in surface temperature. 

The temporal analysis between 2023 and 2024 indicates dynamics in both thermal conditions and land cover 

composition. In general, thermal conditions in 2024 were lower than in 2023 across all land cover classes. 

Although massive land cover change was not detected, the analysis of the NDVI and NDBI differences 

indicates the presence of localized micro-changes, such as increases in vegetation and building density at 

specific points.  

Urban geometry at the highest levels of building density shows a complex influence on LST. An anomaly was 

identified where the 'Very Dense Built-up' class has a slightly lower average temperature than the 'Dense Built-

up' class. This phenomenon is presumably caused by the shading effect of tall buildings, which reduces the 

surface's exposure to solar radiation, affirming that in addition to land cover composition, the three-

dimensional structure of the city also plays a role in modulating the microclimate. 
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