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Abstract: Accurate air temperature monitoring is essential for understanding climate dynamics and microclimates,
particularly in regions with diverse topography. The limited number of observation stations often results in data that
do not fully represent actual conditions. To address this gap, combining in-situ measurements with ERAS5-Land
reanalysis presents a promising alternative, although ERAS5-Land may still exhibit biases in mountainous or urban
areas. This study applies Kriging with External Drift (KED) to improve temperature estimation, focusing on
identifying the most suitable semivariogram model. Daily and monthly analyses were conducted, with performance
evaluated using RMSE, MAE, and MSE. The results indicate that the Spherical model consistently performs best for
average and maximum temperatures, while the Exponential model provides better estimates for minimum temperature
at the daily scale, and the Linear model at the monthly scale. These findings demonstrate that KED can significantly
enhance temperature estimation in areas with sparse observations, while also highlighting the most reliable
semivariogram models for different temperature parameters.
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Introduction

Air temperature, as a key indicator of thermal energy distribution in the atmosphere, has far-reaching
implications across various sectors, including ecosystems, agriculture, public health, and the economy
(Carleton & Hsiang, 2016; Abbass et al., 2022). Several factors, such as solar radiation, humidity, atmospheric
pressure, and geographic conditions, influence air temperature (Shamshiri et al., 2018; Zhao et al., 2021;
Ainurrohmah & Sudarti, 2022). Accurate temperature monitoring is vital not only for short-term weather
predictions but also for supporting the development of climate change mitigation policies and adaptation
strategies based on empirical data (Abbas et al., 2022).

A major challenge in achieving accurate air temperature measurements arises from the limited number
of in-situ observation stations and the geographical complexity of regions such as East Java. This area, with
its diverse climatic conditions linked to varied topography—from coastal zones to mountainous regions—
creates significant microclimatic variability. This variability presents a challenge for obtaining reliable
temperature data due to the sparse distribution of observation stations (Hidayati & Suryanto, 2015).
Furthermore, this limitation hampers the comprehensive understanding of micro- and regional climate change
(Aldrian et al., 2011). Although expanding the network of observation stations is necessary, this expansion is
constrained by high costs and logistical challenges.

Currently, ERAS-Land data from the European Centre for Medium-Range Weather Forecasts
(ECMWF) offers spatial temperature data with relatively high resolution (Hersbach et al., 2020; Mufioz-
Sabater et al., 2021). ERA5-Land employs data assimilation techniques, integrating various satellite datasets
to provide optimal climate observations with a spatial resolution of up to 9 km (Mufioz-Sabater et al., 2021;
C38S, 2022). However, the accuracy of ERAS-Land temperature estimates is limited, particularly in areas with
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complex topographies, such as mountainous or urban regions, where biases and inaccuracies are more
prevalent (Zhao & He, 2022).

To address the challenge of improving temperature estimation, a promising approach involves
combining limited in-situ data with high-resolution spatial observation data. One such technique, Kriging with
External Drift (KED), uses spatial information as a 'drift' to enhance the accuracy of temperature estimations
at specific locations (Hudson & Wackernagel, 1994). The KED method involves constructing a variogram and
semivariogram to identify the spatial model that best fits the characteristics of the available data (Oliver &
Webster, 2014). While the variogram captures the relationship between observation points, the semivariogram
describes the spatial correlation of temperature differences between two points, taking distance and orientation
into account (Bohling, 2005).

Previous research on KED has primarily focused on selecting the appropriate 'drift' data, with less
attention given to the choice of semivariogram model. The correct selection of a semivariogram model is
crucial for ensuring accurate interpolation, especially in regions with significant topographical variations (Ly
et al., 2011). Therefore, this study aims to identify the optimal semivariogram model for KED and assess its
performance in improving temperature estimation accuracy by integrating ERAS-Land as the 'drift'. It is
anticipated that the findings of this research will contribute to overcoming the challenge of insufficient air
temperature observation density in areas lacking in-situ stations, ultimately providing more accurate
temperature data for those regions.

Data and Methods

This study was conducted in East Java Province, located between 111°00' E — 114°04' E and 7°12' S —
8°48' S. The region encompasses coastal lowlands along the coastline and volcanic mountainous areas,
resulting in significant elevation variations (Figure 1). This topographical diversity leads to pronounced
differences in meteorological parameters, with a primary focus on air temperature. The research utilized daily
air temperature data (°C), specifically maximum (Tmax), average (Tave), and minimum (Tmin) temperatures,
spanning from 2019 to 2023 (5 years), collected from 10 BMKG observation stations (Table 1). The data were
sourced from BMKGSoft, a software application developed by the Indonesian Meteorological, Climatological,
and Geophysical Agency (BMKG) for storing and providing observational data. The dataset used in this study
was prioritized for completeness (above 90%) and had undergone a thorough quality control process to ensure
data accuracy.

In addition to the in-situ data from BMKG stations, the study also incorporated reanalysis air
temperature data from the ECMWF's ERAS5-Land, which provides spatial resolution of approximately 9 km
and daily temporal resolution (Mufioz-Sabater et al., 2021). ERAS5-Land data, covering the period from 1950
to the present, are freely accessible via the ECMWF website (Copernicus Climate Change Service, 2022).
Differences in the spatial and temporal resolutions between in-situ air temperature observations (point-based
data) and ERAS5-Land data (grid-based) were addressed through a harmonization process prior to blending the
datasets using Kriging with External Drift (KED). From a spatial perspective, the ERAS-Land data, which are
provided on a 0.1° x 0.1° grid, were projected onto the locations of BMKG stations by extracting the nearest
grid-cell value or applying nearest-neighbor interpolation. These approaches are commonly used to reconcile
the spatial support between gridded and point-based datasets (Li & Heap, 2014). This procedure ensures that
each station is assigned an ERAS5-Land value that is spatially representative of its location, allowing both
datasets to share a consistent spatial basis and to be reliably integrated into subsequent geostatistical modelling.
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Figure 1. Map of the study area.

Table.1. BMKG Observation Stations in East Java

No. Station Name Latitude Longitude  Elevation (m)
1 Stasiun Meteorologi Sangkapura -5.85 112.66 3
2 Stasiun Meteorologi Perak I -7.22 112.72 3
3 Stasiun Meteorologi Juanda -7.38 112.78 3
4 IS)‘:;zillm Meteorologi Maritim Tanjung 791 112.74 3
5  Stasiun Klimatologi Malang -7.90 112.60 590
6  Stasiun Geofisika Pasuruan -7.70 112.64 832
7  Stasiun Geofisika Malang -8.15 112.45 285
8  Stasiun Meteorologi Kalianget -7.04 113.91 3
9  Stasiun Geofisika Nganjuk -7.73 111.77 723
10 Stasiun Meteorologi Banyuwangi -8.22 114.36 52

From a temporal perspective, the hourly ERA5-Land data were converted to daily resolution to match
the temporal scale of the station observations. This aggregation was performed by calculating the daily
minimum, maximum, or mean temperature from the 24 hourly values, following standard procedures for
converting reanalysis data to daily metrics (Tarek et al., 2020). Through this process, the two datasets achieve
temporal equivalence and can be paired according to the same observation dates. The results of this spatio-
temporal harmonization are subsequently incorporated into the Kriging with External Drift (KED) framework,
where the extracted ERAS5-Land values serve as the external drift variable that captures large-scale temperature
patterns, while the in-situ BMKG observations provide the local-scale residual information. The KED
approach is both theoretically and empirically designed to merge broad-scale predictors with point-based local
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observations, thereby producing higher-resolution estimates with markedly improved accuracy (Hengl et al.,
2007; Hengl et al., 2018). Furthermore, the use of ERA5-Land as the drift predictor is strongly supported by
the stable, spatially coherent, and physically consistent characteristics of the reanalysis product (Hersbach et
al., 2020). Consequently, the initial differences in spatial and temporal resolution between the two datasets are
not merely resolved but are strategically exploited through geostatistical integration to enhance the precision
and reliability of the high-resolution temperature estimates.

Kriging with External Drift (KED)

As summarized by Varentsov et al. (2020), Kriging with External Drift (KED) is a geostatistical
technique designed to improve the accuracy of spatial data interpolation by integrating in-situ observations
with external data, referred to as a 'drift,' which influences the variable under analysis, such as air temperature.
The external data serves as an additional predictor to capture spatial variability that may not be represented by
in-situ measurements.

Mathematically, the KED estimation can be expressed as follows:

2(so) = m(so) + iy Ai(z(si) — m(sy)) (1
Where:

Z (sgp) = the estimated value at the target location,

m (s,) = the deterministic estimate at location S, based on the external or drift model (ERA5-Land)

A the Kriging weight calculated based on the spatial variogram between the target location S, and the
measurement point s;,

Z (sj) = the measured value at the point s;

m (s;) = the external drift value at the point s;

A fundamental component of KED is the semivariogram, which describes the spatial relationship
between the in-situ temperature data and the ERAS-Land temperature data used as the drift. It estimates the
spatial dependence pattern between the two datasets (Mazzella & Mazzella, 2013; Oliver & Webster, 2015).

The Semivariogram is formulated as follows:

y(h) = 2% [Z(s) — Z(s + h)]? b)

The semivariogram is defined by three primary parameters: nugget, sill, and range, as depicted in Figure
2. The nugget represents the semivariogram value at zero distance on the vertical axis and indicates variability
at a very small scale, such as local fluctuations or measurement errors (Tang et al., 2021). The sill denotes the
maximum value the semivariogram reaches after the range, illustrating the degree to which data variability can
be explained by the spatial structure. The range is the distance at which the semivariogram levels off, signaling
that data points beyond this distance no longer exhibit significant spatial correlation. These parameters are
crucial in determining the accuracy of the KED model when predicting values at unobserved locations
(Goovaerts, 1997; Chen et al., 2019). In this study, the semivariogram model was computed using the Python
module pykrige (Murphy et al., 2024), which automates the estimation of the sill, nugget, and range
parameters.
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Figure 2. (a) Semivariogram Plot, (b) Theoretical Semivariogram Model Plot

(Mazzella, A., and Mazzella, A., 2013)

The study examined five semivariogram models: Spherical, Exponential, Power, Linear, and Gaussian.
Each of these models has distinct advantages and limitations, which form the primary focus of this research.
A summary of the specific formulations for each semivariogram model is presented in Table 2.

Table 2. Semivariogram Model Calculation Formulas

Semivariogram Models Equation
C C 3h 0.5 ’ for h <
Spherical y(h) = {“ 7t (Z) S <§) orh =2
Co+C for h>a
. 3h
Exponential y(h) = Cy+C [1 — exp (_ ;)]
. — 3h?
Gaussian y(h) = C,+C |1 —exp|— 2
. _ (Cp+Cy.h, for 0 <h <h,
Lincar y(h) = {co +C, . hy, for h > h,
Power y(h) = Cy + ChP
where:
v(h) = Semivariance at lag distance
h = Lag distance between data points,
Co = Nugget effect, which is the semivariance at a very small distance (h=0),
C = The partial sill, which is the maximum value of the semivariance (excluding the nugget
effect),

Co + C = Sill (Total Sill), the value of the semivariogram when the distance is large and the
semivariance becomes constant
A = Range, the distance at which the semivariance reaches the sill.

Cross-Validation Technique

To assess the reliability of the temperature predictions generated by the KED method, cross-validation
is employed as the first step. This resampling technique is widely used for selecting and evaluating the
performance of predictive models (Berrar, 2019). A commonly applied cross-validation approach is Leave-
One-Out Cross-Validation (LOOCV), which is particularly effective for evaluating predictive performance in
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spatial data (Berrar, 2019). In this study, LOOCV was used to assess the performance of each semivariogram
model within the KED framework, utilizing data from all 10 observation stations (10 locations x 1825 days,
or 5 years).

For each iteration on day ¢, one station is excluded from the dataset to serve as the validation point,
while the remaining nine stations are used to construct the semivariogram model to estimate the temperature
for the excluded station on day t. This process is repeated by rotating the validation station in each iteration
(Figure 3). At the end of the process, a dataset of estimated temperatures for all 10 station locations is generated
for each semivariogram model. This dataset is then analyzed to evaluate the performance of each
semivariogram model.

Data Test Data Training
r A LI | 1 \
bt 2 | 3 | a | s | e [ 7 | 8 | 9 | 10]
$
[ + B2 3 | a [ s | 6 [ 7 | 8 | 9 | 10 |
15
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Figure 3. LOOCV (Leave-One-Out-Cross-Validation) process

Statistical Evaluation Metrics

The selection of an appropriate semivariogram model for the Kriging with External Drift (KED)
technique is essential for ensuring the accuracy of temperature estimation results. In this study, the performance
of the KED semivariogram models is assessed by evaluating the error levels using three metrics: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Squared Error (MSE) (Hodson, 2022).

These metrics are employed to determine how closely the model's predictions align with the actual
values. RMSE calculates the square root of the mean of the squared differences between predicted and
observed values, with lower values indicating better model performance. MAE measures the average of the
absolute differences between predicted and observed values, offering insights into the model's stability. On the
other hand, MSE computes the mean of the squared deviations between predictions and actual observations,
making it more sensitive to outliers, where lower values signify more accurate estimations. The formulas for
each of these metrics are presented in Table 3.

Table 3. Metric Calculation Formula

Metrics Equation Range (Perfect)
SE AN $.)2 0toow
(Root Mean Squared Error) ;Z(}’ D)
i=1
n
MAE lzl = 91l 0to
(Mean Absolute Error) n LT Y
i=1
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n
MSE 1 N
(Mean Squared Error) Ez(y i— ) 0 to oo
i=1

Where:

y; = observation value
¥; = predicted value
n = number of data

y = average value of observations

Results And Discussion

Comparison of In-situ Observation Temperature Data and ERAS-Land
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Figure 4. Climatological comparison between in-situ observation temperature values and ERAS5-Land at three types of
temperature, Tave (a), Tmax (b), Tmin (c) for all stations in East Java

Figure 4 illustrates a comparison of the climatological values for three types of temperature: average
temperature (Tave) (a), maximum temperature (Tmax) (b), and minimum temperature (Tmin) (c), between in-
situ observation data and ERAS-Land data, averaged across all stations in East Java. Visually, significant
differences between the two datasets are observed, with the exception of Tmin. Overall, the in-situ data tend
to show higher temperature values compared to ERAS5-Land across all temperature types, particularly for Tave
and Tmax. While ERAS5-Land generally provides lower temperature estimates, it accurately captures the
climatological patterns of all three temperature types, especially in representing Tmin. This suggests that
although ERAS-Land data tend to underestimate the actual air temperature in East Java, they still provide a
reasonable approximation of temperature trends.

To further explore the relationship between temperature and elevation, Figure 5 presents a comparison
of the three temperature types at two selected stations representing distinct locations: the lowland Tanjung
Perak Station (Figure 5a, 5b, and 5c) and the highland Malang Geophysics Station (Figure 5d, Se, and 5f). At
the daily temporal scale, both datasets exhibit similar overall temperature patterns at both stations. While a
bias between ERAS5-Land and in-situ data is apparent, the temperature trends (increases and decreases) over
the observation period show that ERAS-Land values closely align with in-situ observations at specific times,
particularly for Tmin. However, for Tave and Tmax, a noticeable bias exists between the two datasets. These
findings indicate that while ERAS-Land temperature estimates generally follow the observed temperature
patterns, they exhibit discrepancies, particularly for higher temperatures, across stations with varying
elevations.
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(a) Comparison of In-situ and ERAS-Land Average
Temperatures at Tanjung Perak Station

(c) Comparison of In-situ and ERAS-Land Maximum (d) Comparison of In-situ and ERA5-Land Maximum
Temperatures at Tanjung Perak Station Temperatures at Malang Geophysical Station

(e) Comparison of In-situ and ERA5-Land Minimum (f) Comparison of In-situ and ERA5-Land Minimum
Temperatures at Tanjung Perak Station Temperatures at Malang Geophysical Station

Figure 5. Comparison between in-situ and ERA5-Land temperature values for Tave, Tmax, Tmin at Tanjung Perak
Station (a,c,e) and Malang Geophysical Station (b,d,f)

Temperature Correlation Between Observation Locations

Prior to evaluating the performance of Kriging with External Drift (KED), it is crucial to examine the
relationship and temperature patterns across the stations in East Java. This spatial correlation analysis serves
as an essential foundation for integrating in-situ and ERAS-Land data, as it quantifies the degree of similarity
in the temporal temperature patterns between different locations.

The correlation results (Figure 6) generally align with the fundamental geographical principle that the
closer the distance between stations, the higher the correlation. A strong correlation suggests that stations share
similar environmental conditions, while a weaker correlation indicates significant temperature variations due
to local geographical features and microclimatic influences (Yang et al., 2018; Chen et al., 2021). A clear
example of this is the correlation between Tanjung Perak and Perak I stations, which are located approximately
2 km apart and exhibit an almost perfect correlation (0.94). This high correlation likely reflects the influence
of homogeneous factors such as proximity to the sea or the urban heat island effect (Zhou et al., 2020).

In contrast, larger distances and topographical variations lead to weaker temperature correlations. For
instance, Banyuwangi Station, situated at the eastern edge of East Java, shows a significantly lower correlation
(0.38) with Sangkapura Station, due to the considerable geographical separation. Elevation differences also
influence correlations; for example, the Malang Geophysics Station (285 meters above sea level) exhibits a
moderate correlation (0.65) with Pasuruan Geophysics Station, which is at a similar elevation, highlighting the
impact of the lapse rate and mountainous climate. This correlation analysis provides valuable insights for
modeling the spatial temperature structure in the KED framework.
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Figure 6. Correlation Matrix of Tave Between Observation Locations in East Java

Semivariogram Model Selection

Prior to conducting temperature estimation using Kriging with External Drift (KED), the selection of an
appropriate semivariogram model is performed. This step is critical as it directly influences the accuracy of
the KED estimation. The semivariogram model is selected based on KED's ability to predict temperature at
two temporal scales: daily and monthly, across all stations in East Java. The parameters of the sill, nugget, and
range are automatically determined using the PyKrig function in Python, with a binning configuration of 20
bins. The semivariogram models are evaluated for three types of temperature: average temperature (Tave),
maximum temperature (Tmax), and minimum temperature (Tmin), utilizing five different semivariogram
models: Exponential, Gaussian, Linear, Power, and Spherical. Each model is assessed based on three error
metrics Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Squared Error (MSE) to
evaluate its precision and stability in estimating in-situ observed temperature values.

Evaluation at the Daily Scale

At the daily scale, the performance of each KED semivariogram model exhibits distinct patterns, as
depicted in Figure 7. The Exponential, Spherical, and Gaussian models display similar values for the sill,
nugget, and range. Specifically, the Exponential model shows a relatively large nugget, a moderate range, and
quickly reaches the sill; the Spherical model demonstrates a small nugget, a clear range, and a stable approach
to reaching the sill; and the Gaussian model presents a small nugget with a more extended range. In contrast,
the Power and Linear models tend to show irregular patterns, with unclear or absent values for the nugget, sill,
and range.

Based on the analysis of the daily data, the Spherical model exhibits the best performance for predicting
average temperature (Tave), with RMSE = 1.042, MAE = 0.789, and MSE = 1.085, which are lower than those
of the other models. This suggests that the Spherical model is more effective in minimizing errors in Tave
predictions compared to the Exponential model. Additionally, for maximum temperature (Tmax), the Spherical
model also yields the best results, with RMSE = 1.497, MAE = 1.160, and MSE = 2.240, indicating its superior
ability to predict Tmax. In contrast, for minimum temperature (Tmin), the Exponential model outperforms the
other models, with RMSE = 1.423, MAE = 1.007, and MSE = 2.024, highlighting its greater accuracy in
predicting Tmin.
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Each semivariogram model demonstrates varying levels of accuracy; however, the KED estimation
results using all models contribute to enhancing the accuracy of temperature estimation in East Java, as
illustrated in the bar graph in Figure 8. The KED estimates, which integrate in-situ observation data and ERAS5-
Land data for Tave, Tmax, and Tmin, generally show improved performance with lower RMSE values.
Exceptions are observed at the Nganjuk Geophysics Station and Pasuruan Geophysics Station, where the
RMSE values are higher compared to the ERAS5-Land temperature estimates. This discrepancy may be
attributed to the notably high elevations of these stations (elevation > 700 meters above sea level, as detailed

in Table 1).

Table 4. Results of Comparison of Semivariogram Model Accuracy on Daily Temporal Scale

Metrik LZZ‘;Z_ Exponential Gaussian Linear Power Spherical
RMSE 1.563 1.044 1.105 1.083 1.070 1.039
% MAE 1.355 0.784 0.842 0.824 0.814 0.782
a MSE 2444 1.090 1.220 1.172 1.145 1.079
RMSE  2.805 1.488 1.484 1.553 1.551 1.478
é MAE  2.484 1.142 1.136 1.219 1.215 1.134
a MSE  7.870 2.213 2.201 2.412 2.406 2.185
RMSE  1.265 1.423 1.528 1.456 1.472 1.448
E MAE  0.984 1.007 1.079 1.058 1.066 1.033
" MSE 1.600 2.024 2.335 2.121 2.168 2.097
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Figure 7. Example of a Semivariogram Model Graph for Estimating KED Tave,
Tmax, Tmin on a Daily Scale aat Juanda Station

Figure 8. Graph of Daily Temporal Scale RMSE Values Before Blending Data (ERA5-Land) and
After Blending (in-situ and ERA5-Land), (a) Tave, (b) Tmax, and (c) Tmin
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Evaluation at the Monthly Scale

At the monthly scale, the performance of each KED semivariogram model exhibits distinct patterns, as
shown in Figure 9. The Exponential, Spherical, and Gaussian models generally demonstrate similar, clear, and
stable values for the sill, nugget, and range, while the Power and Linear models display irregular patterns, with
unclear or absent values for these parameters. The evaluation results at the monthly scale are summarized in
Table 5.

Table 5. Results of Comparison of Semivariogram Model
Accuracy on a Monthly Temporal Scale

Metrik  ERA5-Land Exponential Gaussian Linear Power Spherical

RMSE 1.428 0.868 0.931 0.909 0.894 0.851
% MAE 1.293 0.637 0.712 0.663 0.658 0.626
3 MSE 2.039 0.754 0.867 0.826 0.798 0.724
RMSE 2.652 1.191 1.161 1.266 1.260 1.159
E MAE 2.425 0.927 0.897 1.011 1.004 0.908
= MSE 7.034 1.417 1.347 1.603 1.587 1.344
RMSE 0.820 1.147 1.210 1.141 1.171 1.164
E MAE 0.647 0.786 0.836 0.789 0.811 0.802
= MSE 0.673 1.315 1.465 1.302 1.370 1.356

As indicated in Table 5, the Spherical model delivers the best performance for predicting average
temperature (Tave), with RMSE = 0.851, MAE = 0.626, and MSE = 0.724, outperforming the other models.
This suggests that the Spherical model is more effective in minimizing errors in Tave predictions. For
maximum temperature (Tmax), the Spherical model also provides the best results, with RMSE = 1.159 and
MSE = 1.344. In contrast, for minimum temperature (Tmin), the Linear model achieves the best results, with
RMSE = 1.141 and MSE = 1.302, while the Exponential model yields the lowest MAE value at 0.786. The
graphs for each semivariogram model are presented in Figure 9.
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Figure 9. Semivariogram Model Graph for Monthly Scale KED Tave, Tmax, Tmin
Estimation at Juanda Station

A comparison of RMSE values before and after the integration of in-situ and ERAS5-Land data (shown
in Figure 10) demonstrates that the combined data generally results in better performance, with lower RMSE
values for Tave, Tmax, and Tmin at most study locations. However, exceptions are observed at the Pasuruan
Geophysics Station for Tave, which shows an increased RMSE after data integration, and at the Sangkapura
Station for Tmax, where the RMSE also increases after integration. These anomalies are likely due to the
specific elevations of these stations, with Pasuruan Geophysics Station situated at an elevation of 832 meters
above sea level (Table 1), and the differing distances between locations.
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Figure 10. Graph of Monthly Temporal Scale RMSE Values before Blending Data (ERAS5-Land)
and After Blending (in-situ and ERAS-Land), (a) Tave, (b) Tmax, and (c) Tmin

Specifically, the results of this study highlight that the Spherical semivariogram model provides the
most accurate estimates for both average temperature (Tave) and maximum temperature (Tmax). This finding
aligns with the work of Sun et al. (2020), who also identified the Spherical model as the most suitable for
modeling daily air temperature residuals, as it captures strong spatial correlations over short distances due to
microclimate homogeneity, which then diminishes at longer distances. Additionally, the study confirms the
observations of Taszarek et al. (2021), who noted the impact of elevation on accuracy, with elevation
differences leading to vertical biases at each grid point that must be considered in temperature modeling.

Conclusion

The analysis and discussion presented in this study demonstrate that the Kriging with External Drift
(KED) technique significantly enhances the accuracy of temperature estimations for Tmax, Tave, and Tmin.
This improvement is most evident when the Spherical semivariogram model is applied. The Spherical model
consistently outperforms other models, particularly in predicting Tave and Tmax, as evidenced by the lowest
RMSE and MAE values. These findings indicate a superior spatial alignment between in-situ temperature data
and ERAS-Land data. Additionally, the Spherical model effectively handles the large temperature fluctuations
in Tmax, which is particularly prone to high variability and extreme changes. The lower RMSE suggests that
the Spherical model successfully minimizes squared prediction errors, while the small MAE indicates greater
consistency in predicting temperatures close to the observed values. Consequently, the Spherical model proves
to be the most reliable for estimating Tave and Tmax in East Java. In contrast, for Tmin, the Exponential model
yields the lowest RMSE at the daily scale, while the Linear model demonstrates superior performance at the
monthly scale, with the smallest RMSE. Overall, the KED technique, particularly when combined with the
Spherical model, provides more accurate temperature estimates compared to ERAS5-Land data alone, especially
at the monthly scale.

In light of these findings, it is recommended that further studies be conducted over a broader
geographical area and with a greater number of observation sites to validate and extend the results.
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