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Abstract: Accurate air temperature monitoring is essential for understanding climate dynamics and microclimates, 

particularly in regions with diverse topography. The limited number of observation stations often results in data that 

do not fully represent actual conditions. To address this gap, combining in-situ measurements with ERA5-Land 

reanalysis presents a promising alternative, although ERA5-Land may still exhibit biases in mountainous or urban 

areas. This study applies Kriging with External Drift (KED) to improve temperature estimation, focusing on 

identifying the most suitable semivariogram model. Daily and monthly analyses were conducted, with performance 

evaluated using RMSE, MAE, and MSE. The results indicate that the Spherical model consistently performs best for 

average and maximum temperatures, while the Exponential model provides better estimates for minimum temperature 

at the daily scale, and the Linear model at the monthly scale. These findings demonstrate that KED can significantly 

enhance temperature estimation in areas with sparse observations, while also highlighting the most reliable 

semivariogram models for different temperature parameters. 
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Introduction  

Air temperature, as a key indicator of thermal energy distribution in the atmosphere, has far-reaching 

implications across various sectors, including ecosystems, agriculture, public health, and the economy 

(Carleton & Hsiang, 2016; Abbass et al., 2022). Several factors, such as solar radiation, humidity, atmospheric 

pressure, and geographic conditions, influence air temperature (Shamshiri et al., 2018; Zhao et al., 2021; 

Ainurrohmah & Sudarti, 2022). Accurate temperature monitoring is vital not only for short-term weather 

predictions but also for supporting the development of climate change mitigation policies and adaptation 

strategies based on empirical data (Abbas et al., 2022). 

A major challenge in achieving accurate air temperature measurements arises from the limited number 

of in-situ observation stations and the geographical complexity of regions such as East Java. This area, with 

its diverse climatic conditions linked to varied topography—from coastal zones to mountainous regions—

creates significant microclimatic variability. This variability presents a challenge for obtaining reliable 

temperature data due to the sparse distribution of observation stations (Hidayati & Suryanto, 2015). 

Furthermore, this limitation hampers the comprehensive understanding of micro- and regional climate change 

(Aldrian et al., 2011). Although expanding the network of observation stations is necessary, this expansion is 

constrained by high costs and logistical challenges. 

Currently, ERA5-Land data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) offers spatial temperature data with relatively high resolution (Hersbach et al., 2020; Muñoz-

Sabater et al., 2021). ERA5-Land employs data assimilation techniques, integrating various satellite datasets 

to provide optimal climate observations with a spatial resolution of up to 9 km (Muñoz-Sabater et al., 2021; 

C3S, 2022). However, the accuracy of ERA5-Land temperature estimates is limited, particularly in areas with 
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complex topographies, such as mountainous or urban regions, where biases and inaccuracies are more 

prevalent (Zhao & He, 2022). 

To address the challenge of improving temperature estimation, a promising approach involves 

combining limited in-situ data with high-resolution spatial observation data. One such technique, Kriging with 

External Drift (KED), uses spatial information as a 'drift' to enhance the accuracy of temperature estimations 

at specific locations (Hudson & Wackernagel, 1994). The KED method involves constructing a variogram and 

semivariogram to identify the spatial model that best fits the characteristics of the available data (Oliver & 

Webster, 2014). While the variogram captures the relationship between observation points, the semivariogram 

describes the spatial correlation of temperature differences between two points, taking distance and orientation 

into account (Bohling, 2005). 

Previous research on KED has primarily focused on selecting the appropriate 'drift' data, with less 

attention given to the choice of semivariogram model. The correct selection of a semivariogram model is 

crucial for ensuring accurate interpolation, especially in regions with significant topographical variations (Ly 

et al., 2011). Therefore, this study aims to identify the optimal semivariogram model for KED and assess its 

performance in improving temperature estimation accuracy by integrating ERA5-Land as the 'drift'. It is 

anticipated that the findings of this research will contribute to overcoming the challenge of insufficient air 

temperature observation density in areas lacking in-situ stations, ultimately providing more accurate 

temperature data for those regions. 

 

Data and Methods  

This study was conducted in East Java Province, located between 111°00' E – 114°04' E and 7°12' S – 

8°48' S. The region encompasses coastal lowlands along the coastline and volcanic mountainous areas, 

resulting in significant elevation variations (Figure 1). This topographical diversity leads to pronounced 

differences in meteorological parameters, with a primary focus on air temperature. The research utilized daily 

air temperature data (°C), specifically maximum (Tmax), average (Tave), and minimum (Tmin) temperatures, 

spanning from 2019 to 2023 (5 years), collected from 10 BMKG observation stations (Table 1). The data were 

sourced from BMKGSoft, a software application developed by the Indonesian Meteorological, Climatological, 

and Geophysical Agency (BMKG) for storing and providing observational data. The dataset used in this study 

was prioritized for completeness (above 90%) and had undergone a thorough quality control process to ensure 

data accuracy. 

In addition to the in-situ data from BMKG stations, the study also incorporated reanalysis air 

temperature data from the ECMWF's ERA5-Land, which provides spatial resolution of approximately 9 km 

and daily temporal resolution (Muñoz-Sabater et al., 2021). ERA5-Land data, covering the period from 1950 

to the present, are freely accessible via the ECMWF website (Copernicus Climate Change Service, 2022). 

Differences in the spatial and temporal resolutions between in-situ air temperature observations (point-based 

data) and ERA5-Land data (grid-based) were addressed through a harmonization process prior to blending the 

datasets using Kriging with External Drift (KED). From a spatial perspective, the ERA5-Land data, which are 

provided on a 0.1° × 0.1° grid, were projected onto the locations of BMKG stations by extracting the nearest 

grid-cell value or applying nearest-neighbor interpolation. These approaches are commonly used to reconcile 

the spatial support between gridded and point-based datasets (Li & Heap, 2014). This procedure ensures that 

each station is assigned an ERA5-Land value that is spatially representative of its location, allowing both 

datasets to share a consistent spatial basis and to be reliably integrated into subsequent geostatistical modelling. 
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Figure 1. Map of the study area. 

 

Table.1. BMKG Observation Stations in East Java 

No. Station Name Latitude Longitude Elevation (m) 

1 Stasiun Meteorologi Sangkapura -5.85 112.66 3 

2 Stasiun Meteorologi Perak I -7.22 112.72 3 

3 Stasiun Meteorologi Juanda -7.38 112.78 3 

4 Stasiun Meteorologi Maritim Tanjung 

Perak 
-7.21 112.74 3 

5 Stasiun Klimatologi Malang -7.90 112.60 590 

6 Stasiun Geofisika Pasuruan -7.70 112.64 832 

7 Stasiun Geofisika Malang -8.15 112.45 285 

8 Stasiun Meteorologi Kalianget -7.04 113.91 3 

9 Stasiun Geofisika Nganjuk -7.73 111.77 723 

10 Stasiun Meteorologi Banyuwangi -8.22 114.36 52 

 

From a temporal perspective, the hourly ERA5-Land data were converted to daily resolution to match 

the temporal scale of the station observations. This aggregation was performed by calculating the daily 

minimum, maximum, or mean temperature from the 24 hourly values, following standard procedures for 

converting reanalysis data to daily metrics (Tarek et al., 2020). Through this process, the two datasets achieve 

temporal equivalence and can be paired according to the same observation dates. The results of this spatio-

temporal harmonization are subsequently incorporated into the Kriging with External Drift (KED) framework, 

where the extracted ERA5-Land values serve as the external drift variable that captures large-scale temperature 

patterns, while the in-situ BMKG observations provide the local-scale residual information. The KED 

approach is both theoretically and empirically designed to merge broad-scale predictors with point-based local 
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observations, thereby producing higher-resolution estimates with markedly improved accuracy (Hengl et al., 

2007; Hengl et al., 2018). Furthermore, the use of ERA5-Land as the drift predictor is strongly supported by 

the stable, spatially coherent, and physically consistent characteristics of the reanalysis product (Hersbach et 

al., 2020). Consequently, the initial differences in spatial and temporal resolution between the two datasets are 

not merely resolved but are strategically exploited through geostatistical integration to enhance the precision 

and reliability of the high-resolution temperature estimates. 

 

Kriging with External Drift (KED) 

As summarized by Varentsov et al. (2020), Kriging with External Drift (KED) is a geostatistical 

technique designed to improve the accuracy of spatial data interpolation by integrating in-situ observations 

with external data, referred to as a 'drift,' which influences the variable under analysis, such as air temperature. 

The external data serves as an additional predictor to capture spatial variability that may not be represented by 

in-situ measurements. 

Mathematically, the KED estimation can be expressed as follows: 

ẑ(s0) = m(s0) +  ∑ λi(z(si) − m(si))n
i=1                                                     (1) 

Where: 

ẑ (s0)   =   the estimated value at the target location,  

m (so)  =  the deterministic estimate at location so based on the external or drift model (ERA5-Land) 

 λi   =  the Kriging weight calculated based on the spatial variogram between the target location so and the  

  measurement point  si, 

  ẑ (si)  =  the measured value at the point si , 

 m (si)  =  the external drift value at the point si 

 

A fundamental component of KED is the semivariogram, which describes the spatial relationship 

between the in-situ temperature data and the ERA5-Land temperature data used as the drift. It estimates the 

spatial dependence pattern between the two datasets (Mazzella & Mazzella, 2013; Oliver & Webster, 2015). 

The Semivariogram is formulated as follows: 

γ(h) =  
1

2
∑  [Z(s) − Z(s + h)]2                                   (2) 

 

The semivariogram is defined by three primary parameters: nugget, sill, and range, as depicted in Figure 

2. The nugget represents the semivariogram value at zero distance on the vertical axis and indicates variability 

at a very small scale, such as local fluctuations or measurement errors (Tang et al., 2021). The sill denotes the 

maximum value the semivariogram reaches after the range, illustrating the degree to which data variability can 

be explained by the spatial structure. The range is the distance at which the semivariogram levels off, signaling 

that data points beyond this distance no longer exhibit significant spatial correlation. These parameters are 

crucial in determining the accuracy of the KED model when predicting values at unobserved locations 

(Goovaerts, 1997; Chen et al., 2019). In this study, the semivariogram model was computed using the Python 

module pykrige (Murphy et al., 2024), which automates the estimation of the sill, nugget, and range 

parameters. 
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Figure 2. (a) Semivariogram Plot, (b) Theoretical Semivariogram Model Plot 

 (Mazzella, A., and Mazzella, A., 2013) 

 

The study examined five semivariogram models: Spherical, Exponential, Power, Linear, and Gaussian. 

Each of these models has distinct advantages and limitations, which form the primary focus of this research. 

A summary of the specific formulations for each semivariogram model is presented in Table 2. 

 

Table 2. Semivariogram Model Calculation Formulas 

Semivariogram Models Equation 

Spherical γ(h) =  {
C0 + C [ (

3h

2a
) − 0.5 (

h

a
)

3

]       for  h ≤ a 

C0 + C                                            for  h > a

 

Exponential γ(h) =  C0 + C [1 − exp (− 
3h

a
)] 

Gaussian γ(h) =  C0 + C [1 − exp (− 
− 3h2

a2
)] 

Linear γ(h) =  {
C0 + C1 . h,             for  0 ≤ h ≤ h0   
C0 + C1 . h0,                  for  h > h0        

 

Power γ(h) =  C0 +  Chp 

 

where: 

γ(h)   =  Semivariance at lag distance 

h   =  Lag distance between data points,  

C0   =  Nugget effect, which is the semivariance at a very small distance (h=0),  

C   =  The partial sill, which is the maximum value of the semivariance (excluding the nugget  

      effect),  

C0 + C  =  Sill (Total Sill), the value of the semivariogram when the distance is large and the  

       semivariance becomes constant  

A   =  Range, the distance at which the semivariance reaches the sill. 
 

Cross-Validation Technique 

 

To assess the reliability of the temperature predictions generated by the KED method, cross-validation 

is employed as the first step. This resampling technique is widely used for selecting and evaluating the 

performance of predictive models (Berrar, 2019). A commonly applied cross-validation approach is Leave-

One-Out Cross-Validation (LOOCV), which is particularly effective for evaluating predictive performance in 
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spatial data (Berrar, 2019). In this study, LOOCV was used to assess the performance of each semivariogram 

model within the KED framework, utilizing data from all 10 observation stations (10 locations × 1825 days, 

or 5 years). 

For each iteration on day 𝑡, one station is excluded from the dataset to serve as the validation point, 

while the remaining nine stations are used to construct the semivariogram model to estimate the temperature 

for the excluded station on day 𝑡. This process is repeated by rotating the validation station in each iteration 

(Figure 3). At the end of the process, a dataset of estimated temperatures for all 10 station locations is generated 

for each semivariogram model. This dataset is then analyzed to evaluate the performance of each 

semivariogram model. 

 

 

Figure 3. LOOCV (Leave-One-Out-Cross-Validation) process 

 

Statistical Evaluation Metrics 

The selection of an appropriate semivariogram model for the Kriging with External Drift (KED) 

technique is essential for ensuring the accuracy of temperature estimation results. In this study, the performance 

of the KED semivariogram models is assessed by evaluating the error levels using three metrics: Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Squared Error (MSE) (Hodson, 2022). 

These metrics are employed to determine how closely the model's predictions align with the actual 

values. RMSE calculates the square root of the mean of the squared differences between predicted and 

observed values, with lower values indicating better model performance. MAE measures the average of the 

absolute differences between predicted and observed values, offering insights into the model's stability. On the 

other hand, MSE computes the mean of the squared deviations between predictions and actual observations, 

making it more sensitive to outliers, where lower values signify more accurate estimations. The formulas for 

each of these metrics are presented in Table 3. 

Table 3. Metric Calculation Formula 

Metrics Equation Range (Perfect) 

RMSE 

(Root Mean Squared Error) 
√

1

𝑛
∑(𝑦𝑖 −  𝑦̂𝑖)2

𝑛

𝑖=1

 0 to ∞ 

MAE 

(Mean Absolute Error) 

1

𝑛
∑⌊𝑦𝑖 −  𝑦̂𝑖⌋

𝑛

𝑖=1

 0 to ∞ 
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MSE 

(Mean Squared Error) 

1

𝑛
∑(𝑦𝑖 −  𝑦̂𝑖)2

𝑛

𝑖=1

 0 to ∞ 

 

Where: 

𝑦𝑖  =  observation value 

𝑦̂𝑖   =  predicted value 

n   =  number of data 

𝑦̅   =  average value of observations 

 

 

Results And Discussion 

Comparison of In-situ Observation Temperature Data and ERA5-Land 

 

Figure 4. Climatological comparison between in-situ observation temperature values and ERA5-Land at three types of 

temperature, Tave (a), Tmax (b), Tmin (c) for all stations in East Java 

 

Figure 4 illustrates a comparison of the climatological values for three types of temperature: average 

temperature (Tave) (a), maximum temperature (Tmax) (b), and minimum temperature (Tmin) (c), between in-

situ observation data and ERA5-Land data, averaged across all stations in East Java. Visually, significant 

differences between the two datasets are observed, with the exception of Tmin. Overall, the in-situ data tend 

to show higher temperature values compared to ERA5-Land across all temperature types, particularly for Tave 

and Tmax. While ERA5-Land generally provides lower temperature estimates, it accurately captures the 

climatological patterns of all three temperature types, especially in representing Tmin. This suggests that 

although ERA5-Land data tend to underestimate the actual air temperature in East Java, they still provide a 

reasonable approximation of temperature trends. 

To further explore the relationship between temperature and elevation, Figure 5 presents a comparison 

of the three temperature types at two selected stations representing distinct locations: the lowland Tanjung 

Perak Station (Figure 5a, 5b, and 5c) and the highland Malang Geophysics Station (Figure 5d, 5e, and 5f). At 

the daily temporal scale, both datasets exhibit similar overall temperature patterns at both stations. While a 

bias between ERA5-Land and in-situ data is apparent, the temperature trends (increases and decreases) over 

the observation period show that ERA5-Land values closely align with in-situ observations at specific times, 

particularly for Tmin. However, for Tave and Tmax, a noticeable bias exists between the two datasets. These 

findings indicate that while ERA5-Land temperature estimates generally follow the observed temperature 

patterns, they exhibit discrepancies, particularly for higher temperatures, across stations with varying 

elevations. 
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Figure 5. Comparison between in-situ and ERA5-Land temperature values for Tave, Tmax, Tmin at Tanjung Perak 

Station (a,c,e) and Malang Geophysical Station (b,d,f) 

 

Temperature Correlation Between Observation Locations 

Prior to evaluating the performance of Kriging with External Drift (KED), it is crucial to examine the 

relationship and temperature patterns across the stations in East Java. This spatial correlation analysis serves 

as an essential foundation for integrating in-situ and ERA5-Land data, as it quantifies the degree of similarity 

in the temporal temperature patterns between different locations. 

The correlation results (Figure 6) generally align with the fundamental geographical principle that the 

closer the distance between stations, the higher the correlation. A strong correlation suggests that stations share 

similar environmental conditions, while a weaker correlation indicates significant temperature variations due 

to local geographical features and microclimatic influences (Yang et al., 2018; Chen et al., 2021). A clear 

example of this is the correlation between Tanjung Perak and Perak I stations, which are located approximately 

2 km apart and exhibit an almost perfect correlation (0.94). This high correlation likely reflects the influence 

of homogeneous factors such as proximity to the sea or the urban heat island effect (Zhou et al., 2020). 

In contrast, larger distances and topographical variations lead to weaker temperature correlations. For 

instance, Banyuwangi Station, situated at the eastern edge of East Java, shows a significantly lower correlation 

(0.38) with Sangkapura Station, due to the considerable geographical separation. Elevation differences also 

influence correlations; for example, the Malang Geophysics Station (285 meters above sea level) exhibits a 

moderate correlation (0.65) with Pasuruan Geophysics Station, which is at a similar elevation, highlighting the 

impact of the lapse rate and mountainous climate. This correlation analysis provides valuable insights for 

modeling the spatial temperature structure in the KED framework. 
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Figure 6. Correlation Matrix of Tave Between Observation Locations in East Java 

 

Semivariogram Model Selection 

Prior to conducting temperature estimation using Kriging with External Drift (KED), the selection of an 

appropriate semivariogram model is performed. This step is critical as it directly influences the accuracy of 

the KED estimation. The semivariogram model is selected based on KED's ability to predict temperature at 

two temporal scales: daily and monthly, across all stations in East Java. The parameters of the sill, nugget, and 

range are automatically determined using the PyKrig function in Python, with a binning configuration of 20 

bins. The semivariogram models are evaluated for three types of temperature: average temperature (Tave), 

maximum temperature (Tmax), and minimum temperature (Tmin), utilizing five different semivariogram 

models: Exponential, Gaussian, Linear, Power, and Spherical. Each model is assessed based on three error 

metrics Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Squared Error (MSE) to 

evaluate its precision and stability in estimating in-situ observed temperature values. 

 

Evaluation at the Daily Scale 

At the daily scale, the performance of each KED semivariogram model exhibits distinct patterns, as 

depicted in Figure 7. The Exponential, Spherical, and Gaussian models display similar values for the sill, 

nugget, and range. Specifically, the Exponential model shows a relatively large nugget, a moderate range, and 

quickly reaches the sill; the Spherical model demonstrates a small nugget, a clear range, and a stable approach 

to reaching the sill; and the Gaussian model presents a small nugget with a more extended range. In contrast, 

the Power and Linear models tend to show irregular patterns, with unclear or absent values for the nugget, sill, 

and range. 

Based on the analysis of the daily data, the Spherical model exhibits the best performance for predicting 

average temperature (Tave), with RMSE = 1.042, MAE = 0.789, and MSE = 1.085, which are lower than those 

of the other models. This suggests that the Spherical model is more effective in minimizing errors in Tave 

predictions compared to the Exponential model. Additionally, for maximum temperature (Tmax), the Spherical 

model also yields the best results, with RMSE = 1.497, MAE = 1.160, and MSE = 2.240, indicating its superior 

ability to predict Tmax. In contrast, for minimum temperature (Tmin), the Exponential model outperforms the 

other models, with RMSE = 1.423, MAE = 1.007, and MSE = 2.024, highlighting its greater accuracy in 

predicting Tmin. 
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Each semivariogram model demonstrates varying levels of accuracy; however, the KED estimation 

results using all models contribute to enhancing the accuracy of temperature estimation in East Java, as 

illustrated in the bar graph in Figure 8. The KED estimates, which integrate in-situ observation data and ERA5-

Land data for Tave, Tmax, and Tmin, generally show improved performance with lower RMSE values. 

Exceptions are observed at the Nganjuk Geophysics Station and Pasuruan Geophysics Station, where the 

RMSE values are higher compared to the ERA5-Land temperature estimates. This discrepancy may be 

attributed to the notably high elevations of these stations (elevation > 700 meters above sea level, as detailed 

in Table 1). 

 

Table 4. Results of Comparison of Semivariogram Model Accuracy on Daily Temporal Scale 

  Metrik 
ERA5-

Land 
Exponential Gaussian Linear Power Spherical 

Ta
ve

 

RMSE 1.563 1.044 1.105 1.083 1.070 1.039 

MAE 1.355 0.784 0.842 0.824 0.814 0.782 

MSE 2.444 1.090 1.220 1.172 1.145 1.079 

Tm
ax

 RMSE 2.805 1.488 1.484 1.553 1.551 1.478 

MAE 2.484 1.142 1.136 1.219 1.215 1.134 

MSE 7.870 2.213 2.201 2.412 2.406 2.185 

Tm
in

 

RMSE 1.265 1.423 1.528 1.456 1.472 1.448 

MAE 0.984 1.007 1.079 1.058 1.066 1.033 

MSE 1.600 2.024 2.335 2.121 2.168 2.097 
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Figure 7. Example of a Semivariogram Model Graph for Estimating KED Tave, 

Tmax, Tmin on a Daily Scale aat Juanda Station 

 

 

Figure 8. Graph of Daily Temporal Scale RMSE Values Before Blending Data (ERA5-Land) and 

After Blending (in-situ and ERA5-Land), (a) Tave, (b) Tmax, and (c) Tmin 
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Evaluation at the Monthly Scale 

At the monthly scale, the performance of each KED semivariogram model exhibits distinct patterns, as 

shown in Figure 9. The Exponential, Spherical, and Gaussian models generally demonstrate similar, clear, and 

stable values for the sill, nugget, and range, while the Power and Linear models display irregular patterns, with 

unclear or absent values for these parameters. The evaluation results at the monthly scale are summarized in 

Table 5. 

Table 5. Results of Comparison of Semivariogram Model 

Accuracy on a Monthly Temporal Scale 

  Metrik ERA5-Land Exponential Gaussian Linear Power Spherical 

T
a
v
e 

RMSE 1.428 0.868 0.931 0.909 0.894 0.851 

MAE 1.293 0.637 0.712 0.663 0.658 0.626 

MSE 2.039 0.754 0.867 0.826 0.798 0.724 

T
m

a
x

 RMSE 2.652 1.191 1.161 1.266 1.260 1.159 

MAE 2.425 0.927 0.897 1.011 1.004 0.908 

MSE 7.034 1.417 1.347 1.603 1.587 1.344 

T
m

in
 RMSE 0.820 1.147 1.210 1.141 1.171 1.164 

MAE 0.647 0.786 0.836 0.789 0.811 0.802 

MSE 0.673 1.315 1.465 1.302 1.370 1.356 

 

As indicated in Table 5, the Spherical model delivers the best performance for predicting average 

temperature (Tave), with RMSE = 0.851, MAE = 0.626, and MSE = 0.724, outperforming the other models. 

This suggests that the Spherical model is more effective in minimizing errors in Tave predictions. For 

maximum temperature (Tmax), the Spherical model also provides the best results, with RMSE = 1.159 and 

MSE = 1.344. In contrast, for minimum temperature (Tmin), the Linear model achieves the best results, with 

RMSE = 1.141 and MSE = 1.302, while the Exponential model yields the lowest MAE value at 0.786. The 

graphs for each semivariogram model are presented in Figure 9. 
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Figure 9. Semivariogram Model Graph for Monthly Scale KED Tave, Tmax, Tmin 

Estimation at Juanda Station 

 

A comparison of RMSE values before and after the integration of in-situ and ERA5-Land data (shown 

in Figure 10) demonstrates that the combined data generally results in better performance, with lower RMSE 

values for Tave, Tmax, and Tmin at most study locations. However, exceptions are observed at the Pasuruan 

Geophysics Station for Tave, which shows an increased RMSE after data integration, and at the Sangkapura 

Station for Tmax, where the RMSE also increases after integration. These anomalies are likely due to the 

specific elevations of these stations, with Pasuruan Geophysics Station situated at an elevation of 832 meters 

above sea level (Table 1), and the differing distances between locations. 
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Figure 10. Graph of Monthly Temporal Scale RMSE Values before Blending Data (ERA5-Land) 

and After Blending (in-situ and ERA5-Land), (a) Tave, (b) Tmax, and (c) Tmin 

 

Specifically, the results of this study highlight that the Spherical semivariogram model provides the 

most accurate estimates for both average temperature (Tave) and maximum temperature (Tmax). This finding 

aligns with the work of Sun et al. (2020), who also identified the Spherical model as the most suitable for 

modeling daily air temperature residuals, as it captures strong spatial correlations over short distances due to 

microclimate homogeneity, which then diminishes at longer distances. Additionally, the study confirms the 

observations of Taszarek et al. (2021), who noted the impact of elevation on accuracy, with elevation 

differences leading to vertical biases at each grid point that must be considered in temperature modeling. 

 

Conclusion  

The analysis and discussion presented in this study demonstrate that the Kriging with External Drift 

(KED) technique significantly enhances the accuracy of temperature estimations for Tmax, Tave, and Tmin. 

This improvement is most evident when the Spherical semivariogram model is applied. The Spherical model 

consistently outperforms other models, particularly in predicting Tave and Tmax, as evidenced by the lowest 

RMSE and MAE values. These findings indicate a superior spatial alignment between in-situ temperature data 

and ERA5-Land data. Additionally, the Spherical model effectively handles the large temperature fluctuations 

in Tmax, which is particularly prone to high variability and extreme changes. The lower RMSE suggests that 

the Spherical model successfully minimizes squared prediction errors, while the small MAE indicates greater 

consistency in predicting temperatures close to the observed values. Consequently, the Spherical model proves 

to be the most reliable for estimating Tave and Tmax in East Java. In contrast, for Tmin, the Exponential model 

yields the lowest RMSE at the daily scale, while the Linear model demonstrates superior performance at the 

monthly scale, with the smallest RMSE. Overall, the KED technique, particularly when combined with the 

Spherical model, provides more accurate temperature estimates compared to ERA5-Land data alone, especially 

at the monthly scale. 

In light of these findings, it is recommended that further studies be conducted over a broader 

geographical area and with a greater number of observation sites to validate and extend the results. 
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