Penggunaan Deep Learning dan Post-Processing Algoritma Douglas-Peucker untuk Ekstraksi Jaringan Jalan pada Area Urban dari Orthophoto
DOI:
https://doi.org/10.12962/geoid.v19i2.1127Keywords:
Deep Learning, Ekstraksi Objek, Orthophoto, Peta Skala Besar, Algoritma Douglas-PeuckerAbstract
Peta dasar skala besar sangat dibutuhkan oleh kota besar/metropolitan seperti Kota Surabaya untuk perencanaan kota dan menunjang pembangunan kota cerdas. Beberapa informasi utama yang paling dibutuhkan dari peta skala besar adalah fitur bangunan dan jaringan jalan. Ekstraksi jaringan jalan merupakan pekerjaan yang menantang karena banyak alasan, termasuk sifat heterogen dari geometri dan spektral, kompleksitas objek yang sulit dimodelkan, dan data sensor yang kurang baik. Intepretasi yang dilakukan oleh operator secara visual masih merupakan pendekatan yang umum digunakan untuk ekstraksi informasi dari orthophoto. Akurasi intepretasi yang dihasilkan tergantung pada keterampilan dan pengalaman dari operator. Sehingga, dapat terjadi inkonsistensi pada data yang dihasilkan oleh operator yang berbeda. Beberapa tahun terakhir ini, ekstraksi otomatis jalan dari orthophoto maupun CSRT menjadi isu penelitian penting dan menantang yang mendapat perhatian lebih besar. Dalam penelitian ini, penulis menerapkan metode deteksi objek berbasis Mask Region-based Convolutional Neural Network (Mask R-CNN) untuk ekstraksi jaringan jalan memanfaatkan orthophoto dan DSM LiDAR di daerah urban Kota Surabaya. Beberapa strategi dirancang dan digabungkan dengan model deteksi objek berbasis Mask R-CNN, termasuk post-processing yang terdiri dari regularisasi poligon algoritma Douglass-Peucker, remove overlap, fill gap, dan penghalusan poligon. Metode yang penulis terapkan menghasilkan kinerja yang cukup baik untuk ekstraksi jalan menghasilkan nilai presisi 90,28%; kelengkapan (recall) 85,85%; skor-F1 88,01%; dan IoU 78,59%; serta overall accuracy 95,25 % dan nilai kappa 90,5%.
References
Bonafilia, D., Gill, J., Basu, S., & Yang, D. (2019). Building High Resolution Maps for Humanitarian Aid and Development with Weakly- and Semi-Supervised Learning. 1–9.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2016). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ArXiv:1412.7062 [Cs]. http://arxiv.org/abs/1412.7062
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. ArXiv:1606.00915 [Cs]. http://arxiv.org/abs/1606.00915
Cheng, G., Yang, C., Yao, X., Guo, L., & Han, J. (2018). When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2811–2821. https://doi.org/10.1109/TGRS.2017.2783902
Cira, C.-I., Alcarria, R., Manso-Callejo, M.-Á., & Serradilla, F. (2020). A Deep Learning-Based Solution for Large-Scale Extraction of the Secondary Road Network from High-Resolution Aerial Orthoimagery. Applied Sciences, 10(20), 7272. https://doi.org/10.3390/app10207272
Claussmann, L., Revilloud, M., Gruyer, D., & Glaser, S. (2019). A Review of Motion Planning for Highway Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems, 21(5), 1826–1848. https://doi.org/10.1109/TITS.2019.2913998
Gao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., Jiao, J., & Fu, K. (2018). An End-to-End Neural Network for Road Extraction From Remote Sensing Imagery by Multiple Feature Pyramid Network. IEEE Access, 6, 39401–39414. https://doi.org/10.1109/ACCESS.2018.2856088
Griffiths, D., & Boehm, J. (2019). Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 70–83. https://doi.org/10.1016/j.isprsjprs.2019.05.013
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN. ArXiv:1703.06870 [Cs]. http://arxiv.org/abs/1703.06870
He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV), 2980–2988. https://doi.org/10.1109/ICCV.2017.322
Huang, B., Zhao, B., & Song, Y. (2018). Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sensing of Environment, 214, 73–86. https://doi.org/10.1016/j.rse.2018.04.050
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Levin, N., & Duke, Y. (2012). High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sensing of Environment, 119, 1–10. https://doi.org/10.1016/j.rse.2011.12.005
Li, J., Liu, Y., Zhang, Y., & Zhang, Y. (2021). Cascaded Attention DenseUNet (CADUNet) for Road Extraction from Very-High-Resolution Images. ISPRS International Journal of Geo-Information, 10(5), 329. https://doi.org/10.3390/ijgi10050329
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
Pasquali, G., Iannelli, G. C., & Dell’Acqua, F. (2019). Building Footprint Extraction from Multispectral, Spaceborne Earth Observation Datasets Using a Structurally Optimized U-Net Convolutional Neural Network. Remote Sensing, 11(23), 2803. https://doi.org/10.3390/rs11232803
Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. ArXiv:1506.01497 [Cs]. http://arxiv.org/abs/1506.01497
Republik Indonesia. (2020), Undang-Undang Republik Indonesia No 11 Tahun 2020 Tentang Cipta Kerja. Jakarta.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
Shao, Z., Zhou, Z., Huang, X., & Zhang, Y. (2021). MRENet: Simultaneous Extraction of Road Surface and Road Centerline in Complex Urban Scenes from Very High-Resolution Images. Remote Sensing, 13(2), 239. https://doi.org/10.3390/rs13020239
Xin, J., Zhang, X., Zhang, Z., & Fang, W. (2019). Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet. Remote Sensing, 11(21), 2499. https://doi.org/10.3390/rs11212499
Xu, Y., Xie, Z., Feng, Y., & Chen, Z. (2018). Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning. Remote Sensing, 10(9), 1461. https://doi.org/10.3390/rs10091461
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network. ArXiv:1612.01105 [Cs]. http://arxiv.org/abs/1612.01105
Zhu, Q., Zhang, Y., Wang, L., Zhong, Y., Guan, Q., Lu, X., Zhang, L., & Li, D. (2021). A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 353–365. https://doi.org/10.1016/j.isprsjprs.2021.03.016