Perancangan dan Implementasi Prototipe Sensor Termal Geomarine CTD 1.0 berbasis Arduino untuk Observasi In-situ Lake Surface Water Temperature (LSWT)
DOI:
https://doi.org/10.12962/geoid.v19i2.1218Keywords:
Prototipe, CTD, Arduino, Lake Surface Water TemperatureAbstract
Parameter suhu permukaan air danau atau Lake Water Surface Temperature (LSWT) merupakan salah satu indikator penting dalam pemantauan lingkungan perairan seperti sebagai parameter perubahan iklim dan kerusakan lingkungan akibat aktivitas manusia. Berbagai metode dalam penentuan LSWT telah diterapkan namun yang paling representatif adalah pengambilan secara in-situ menggunakan instrumen salah satunya Conductivity, Temperature, Depth (CTD). Faktor ketidakjangkauan harga dari alat tersebut secara komersil menjadi pertimbangan utama dalam penelitian ini. Prototipe yang dihasilkan terdiri atas sensor konduktivitas listrik (prinsip anoda-katoda) dan sensor temperatur dengan basis microcontroller Arduino Mega. Dengan mempertimbangkan studi kasus LSWT, maka penelitian ini dibatasi pada penggunaan sensor temperatur. Proses uji korelasi dan validasi juga telah dilakukan dengan mengacu pada instrumen CTD komersil yang telah diketaui tingkat akurasinya. Pengambilan data lapangan tersebut dilaksanakan di Waduk Selorejo, Kabupaten Malang. Nilai temperatur antara prototipe dan CTD komersil memiliki rata-rata selisih absolut sebesar 0,12°C. Hasil uji korelasi menunjukkan bahwa tingkat hubungan bacaan protipe dengan data validasi berkorelasi kuat (95,9%). Selain itu pada uji validasi menggunakan nilai Root Mean Square Error (RMSE) menunjukkan bahwa hasil bacaan sensor temperatur pada prototipe memiliki penyimpangan sebesar 0,308°C sehingga dapat dikategorikan rendah. Oleh karena itu, prototipe ini dapat digunakan untuk aplikasi in-situ LSWT. Namun demikian, pengembangan produk dari prototipe ini tetap dibutuhkan untuk memaksimalkan potensi dan mengurangi ketergantungan terhadap instrumen lainnya.
References
Barron, J. J., & Ashton, C. (2005). The effect of temperature on conductivity measurement. A Reagecon Technical Paper, 7(3), 1-5.
Chakravartula, V., Nandini, P., Narayanamorthi, R., Dooly, G., Duraibabu, D. B., & Dhanalakshmi, S. (2022, 21-24 Feb. 2022). Employing the Reflected Amplitude of a Fibre Bragg Grating Sensor for High Resolution Salinity and Depth Measurement. Paper presented at the OCEANS 2022 - Chennai.
Dokulil, M. T., de Eyto, E., Maberly, S. C., May, L., Weyhenmeyer, G. A., & Woolway, R. I. (2021). Increasing maximum lake surface temperature under climate change. Climatic Change, 165(3), 56. doi:10.1007/s10584-021-03085-1
Duraibabu, D. B., Leen, G., Toal, D., Newe, T., Lewis, E., & Dooly, G. (2017). Underwater Depth and Temperature Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications. Sensors, 17(6). doi:10.3390/s17061228
Gule, T. T., Lemma, B., & Hailu, B. T. (2023). Evaluation of the physical, chemical, and biological characteristics of surface water in urban settings and its applicability to SDG 6: The case of Addis Ababa, Ethiopia. Scientific African, 21, e01744. doi:https://doi.org/10.1016/j.sciaf.2023.e01744
Harlan, J. (2018). Analisis regresi linear. Journal of Chemical Information and Modeling, 53(9), 1-19.
Javaheri, A., Babbar-Sebens, M., & Miller, R. N. (2016). From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies. Advances in Water Resources, 92, 284-298. doi:https://doi.org/10.1016/j.advwatres.2016.03.012
Jaya, I. G., Mindra. (2010). Modul Praktikum Analisis Regresi Statistika. Bandung: Universitas Padjajaran.
Kayastha, M. B., Liu, T., Titze, D., Havens, T. C., Huang, C., & Xue, P. (2023). Reconstructing 42 Years (1979–2020) of Great Lakes Surface Temperature through a Deep Learning Approach. Remote Sensing, 15(17). doi:10.3390/rs15174253
Kazmi, S. S. U. H., Wang, Y. Y. L., Cai, Y.-E., & Wang, Z. (2022). Temperature effects in single or combined with chemicals to the aquatic organisms: An overview of thermo-chemical stress. Ecological Indicators, 143. doi:10.1016/j.ecolind.2022.109354
Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364. doi:https://doi.org/10.1016/j.cosrev.2021.100364
Lee, D.-Y., Lee, D.-S., Cha, Y., Min, J.-H., & Park, Y.-S. (2023). Data-driven models for predicting community changes in freshwater ecosystems: A review. Ecological Informatics, 77, 102163. doi:https://doi.org/10.1016/j.ecoinf.2023.102163
Piotrowski, A. P., Napiorkowski, J. J., & Zhu, S. (2023). Novel Air2water Model Variant for Lake Surface Temperature Modeling With Detailed Analysis of Calibration Methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 553-569. doi:10.1109/JSTARS.2022.3226516
Ratcliffe, M. (2015). Hacking the Way to Growing Food: Three Dollar EC - PPM Meter [Arduino]. The Free Software Foundation
Sarwono, J. (2006). Metode Penelitian Kuantitatif dan Kualitatif. Yogyakarta: Graha Ilmu.
Sharma, S., Gray, D. K., Read, J. S., O’Reilly, C. M., Schneider, P., Qudrat, A., . . . Woo, K. H. (2015). A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data, 2(1), 150008. doi:10.1038/sdata.2015.8
Staples, K., Richardson, S., Neville, P. J., & Oosthuizen, J. (2023). An Improved Shallow Water Temperature Model for An Australian Tidal Wetland Environment Using Publicly Available Data. Water, 15(12). doi:10.3390/w15122221
Wang, J., Zhou, X., Miao, Y., Jiang, G., Tong, L., Tao, P., . . . Peng, W. (2023). Integrated and compact fiber-optic conductivity-temperature-depth (CTD) sensor for marine detection. Optics & Laser Technology, 164, 109523. doi:https://doi.org/10.1016/j.optlastec.2023.109523
Wang, L., Xu, B., Zhang, C., Fu, G., Chen, X., Zheng, Y., & Zhang, J. (2022). Surface water temperature prediction in large-deep reservoirs using a long short-term memory model. Ecological Indicators, 134. doi:10.1016/j.ecolind.2021.108491
Zeng, F., Song, C., Cao, Z., Xue, K., Lu, S., Chen, T., & Liu, K. (2023). Monitoring inland water via Sentinel satellite constellation: A review and perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 204, 340-361. doi:https://doi.org/10.1016/j.isprsjprs.2023.09.011
Zhu, S., Ptak, M., Sojka, M., Piotrowski, A. P., & Luo, W. (2023). A simple approach to estimate lake surface water temperatures in Polish lowland lakes. Journal of Hydrology: Regional Studies, 48. doi:10.1016/j.ejrh.2023.101468
Zwart, J. A., Diaz, J., Hamshaw, S., Oliver, S., Ross, J. C., Sleckman, M., . . . White, E. (2023). Evaluating deep learning architecture and data assimilation for improving water temperature forecasts at unmonitored locations. Frontiers in Water, 5. doi:10.3389/frwa.2023.1184992