Pemodelan Quasigeoid Lokal Bali dari Data Gayaberat Teristris Menggunakan Formula Hotine
Keywords:
Quasieoid, Formula Hotine, Jarak SpherisAbstract
Quasigeoid lokal pulau Bali di definisikan menggunakan persamaan Hotine. Data yang digunakan kombinasi data gangguan gayaberat hasil pengukuran terestris, gayaberat lautDTU17, EGM2008 derajat 360 dan SRTM15dengan berbagai variasi jarak spheris diuji untuk menghasil quasigeoid teliti. Variasi jarak spherisyangdigunakan sebesar 0.1 , 0.3 , 0.5 , 0.7 , 0.9 , 1.1 , dan 1.3 . Quasigeoid dikoreksi dengan fungsi anomali gayaberat Bouguer untuk mendapatkan model geoid. Validasi geoid dibandingkan dengan 154 titik co-site GNSS/sipat datar teliti sepanjang jalur yang menghubungkan stasiun pasang surut laut Celukan Bawang ke Tanjung Benoa. Hasil perbandingan menunjukkan bahwa geoid dengan jarak spheris 0.9 paling akurat dengan nilai standar deviasi sebesar 20,9 cm. Standar deviasi menunjukkan bahwa terjadi pola penurunan nilai dari jarak spheris 0.3 ke 0.9 . Kondisi tersebut dapat disebabkan karena optimalisasi eliminasi kesalahan trunkasi gangguan gayaberat. Meskipun demikian, penelitian yang lebih komprehensif diperlukan untuk menunjukkan pengaruh hubungan antara jarak spheris dan interval data gayaberat yang tersedia.
References
Ågren, J. (2004). The analytical continuation bias in geoid determination using potential coefficients and terrestrial gravity data. Journal of Geodesy, 78, 314–332. https://doi.org/10.1007/s00190-004-0395-0.
Amjadiparvar, B., Rangelova, E. V., Sideris, M. G., & Véronneau, M. (2013). North American height datums and their offsets: The effect of GOCE omission errors and systematic levelling effects. Journal of Applied Geodesy, 7(1), 39–50. https://doi.org/10.1515/jag-2012-0034.
Andersen, O. B., & Knudsen, P. (2020). The DTU17 global marine gravity field: First validation results. International Association of Geodesy Symposia, 150, 83–87. https://doi.org/10.1007/1345_2019_65.
Bayoud, F. A., & Sideris, M. G. (2003). Two different methodologies for geoid determination from ground and airborne gravity data. Journal International of Geophysics, 155(3), 914–922. https://doi.org/10.1111/j.1365-246X.2003.02083.x.
Egea-Roca, D., Arizabaleta-Diez, M., Pany, T., Antreich, F., Lopez-Salcedo, J. A., Paonni, M., & Seco-Granados, G. (2022). GNSS User Technology: State-of-the-Art and Future Trends. IEEE Access, 10, 39939–39968. https://doi.org/10.1109/ACCESS.2022.3165594.
Featherstone, W. E., McCubbine, J. C., Brown, N. J., Claessens, S. J., Filmer, M. S., & Kirby, J. F. (2018). The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates. Journal of Geodesy, 92(2), 149–168. https://doi.org/10.1007/s00190-017-1053-7.
Forsberg, R., & Tscherning, C. (2008). An overview manual for the GRAVSOFT geodetic gravity field modelling programs. Technical Report. Technical University of Denmark.
Francis, O. (2021). Performance assessment of the relative gravimeter Scintrex CG-6. Journal of Geodesy, 95(10), 116. https://doi.org/10.1007/s00190-021-01572-y.
Godah, W., Krynski, J., & Szelachowska, M. (2018). The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models. Journal of Applied Geophysics, 152, 38–47. https://doi.org/10.1016/j.jappgeo.2018.03.002.
Hartanto, P., & Chabibi, F. F. (2018). Uji Ketelitian Model Geospasial Global di Pulau Jawa dan Madura (The Evaluation of Global Geopotential Models in Java and Madura Island). Seminar Nasional Geomatika, 827–834.
Heliani, L.S., Fukuda, Y., & Takemoto, S. (2004). Simulation of the Indonesian land gravity data using a digital terrain model data. Earth, Planets and Space, 56(1), 15–24. https://doi.org/10.1186/BF03352487.
Heliani, Leni S. (2016). Evaluation of Global Geopotential Model and Its Application on Local Geoid Modelling of Java Island, Indonesia. AIP Conference Proceedings: Advances of Science and Technology for Society, 1755. https://doi.org/10.1063/1.4958534.
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer-Verlag.
Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy. Springer, Vienna. https://doi.org/10.1007/978-3-211-33545-1.
Isik, M. S., Erol, B., Erol, S., & Sakil, F. F. (2021). High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado. Journal of Geodesy, 95(5). https://doi.org/10.1007/s00190-021-01501-z.
Jalal, S. J., Musa, T. A., Md Din, A. H., Wan Aris, W. A., Shen, W. Bin, & Pa’suya, M. F. (2019). Influencing factors on the accuracy of local geoid model. Geodesy and Geodynamics, 10(6), 439–445. https://doi.org/10.1016/j.geog.2019.07.003.
Kaplan, E. D., & Hegarty, C. J. (2017). Understanding GPS/GNSS: Principles and Applications (Third Edit). Artech House.
Karcol, R., Mikuška, J., & Marušiak, I. (2017). Normal Earth Gravity Field Versus Gravity Effect of Layered Ellipsoidal Model. In R. Pašteka, J. Mikuška, & B. Meurers (Ed.), Understanding the Bouguer Anomaly (hal. 63–77). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812913-5.00003-8.
Kiamehr, R. (2011). The new quasi-geoid model IRQG09 for Iran. Journal of Applied Geophysics, 73(1), 65–73. https://doi.org/10.1016/j.jappgeo.2010.11.007.
Lin, M., & Li, X. (2022). Impacts of Using the Rigorous Topographic Gravity Modeling Method and Lateral Density Variation Model on Topographic Reductions and Geoid Modeling: A Case Study in Colorado, USA. In Surveys in Geophysics (ID 0123456789). Springer Netherlands. https://doi.org/10.1007/s10712-022-09708-1.
Lyszkowicz, A., Nastula, J., Zielinski, J. B., & Birylo, M. (2021). A New Model of Quasigeoid for the Baltic Sea Area. Remote Sensing, 13. https://doi.org/10.3390/rs13132580.
McCubbine, J. C., Amos, M. J., Tontini, F. C., Smith, E., Winefied, R., Stagpoole, V., & Featherstone, W. E. (2018). The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry. Journal of Geodesy, 92(8), 923–937. https://doi.org/10.1007/s00190-017-1103-1.
Mikhail, E. M., & Gracie, G. (1981). Analysis and Adjustment of Survey Measurements. Van Nonstrand Reinhold.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, 1–38. https://doi.org/10.1029/2011JB008916.
Sakil, F. F., Erol, S., Ellmann, A., & Erol, B. (2021). Geoid modeling by the least squares modification of Hotine’s and Stokes’ formulae using non-gridded gravity data. Computers and Geosciences, 156(August), 104909. https://doi.org/10.1016/j.cageo.2021.104909.
Sánchez, L., & Sideris, M. G. (2017). Vertical datum unification for the International Height Reference System (IHRS). Geophysical Journal International. https://doi.org/10.1093/gji/ggx025.
Sarsito, D. A., Wijaya, D. D., Syahrullah, M., Radjawane, I. M., & Trihantoro, N. F. (2019). Variability of sea surface topography in coastal area (study case: Indonesia). IOP Conference Series: Earth and Environmental Science, 339(1). https://doi.org/10.1088/1755-1315/339/1/012030.
Sideris, M. (2019). Geodetic World Height System Unification. Handbook of Geomathematics, 1–16. https://doi.org/10.1007/978-3-642-27793-1.
Sideris, M. G. (1994). Regional Geoid Determination. In P. Vanicek & N. T. Christou (Ed.), Geoid and Its Geophysical Interpretations. CRC Press. https://doi.org/10.1201/9781003068068.
Sjöberg, L E. (2005). A discussion on the approximations made in the practical implementation of the remove – compute – restore technique in regional geoid modelling. Journal of Geodesy, 78, 645–653. https://doi.org/10.1007/s00190-004-0430-1.
Sjöberg, Lars E. (2003). A general model for modifying Stokes’ formula and its least-squares solution. Journal of Geodesy, 77, 459–464. https://doi.org/10.1007/s00190-003-0346-1.
Sneeuw, N. (2006). Physical Geodesy. In Lecture Notes. Universitat Stuttgart.
Tenzer, R., Novak, P., Moore, P., Kuhn, M., & Vanicek, P. (2006). Explicit formula for the geoid-quasigeoid separation. Studia Geophysica et Geodaetica, 50(4), 607–618. https://doi.org/10.1007/s11200-006-0038-4.
Torge, W. (2001). Geodesy. Walter de Gruyter, Berlin.
Tóth, G., Rózsa, S., & Ádám, J. (2002). Gravity field modelling by torsion balance data - a case study in Hungary. In József Ádám & K.-P. Schwarz (Ed.), Vistas for Geodesy in the New Millennium (hal. 193–198). Springer-Verlag. https://doi.org/10.1007/978-3-662-04709-5_32.
Triarahmadhana, B., & Heliani, L. S. (2014). An Evaluation of the Use of SRTM Data to the Accuracy of Local Geoid Determination: A Case Study of Yogyakarta Region, Indonesia. 12th Biennial Conference of Pan Ocean Remote Sensing Conference (PORSEC 2014).
Vu, D. T., Bruinsma, S., & Bonvalot, S. (2019). A high-resolution gravimetric quasigeoid model for Vietnam. Earth, Planets and Space, 71(1). https://doi.org/10.1186/s40623-019-1045-3.
Wenzel, G. (1998). Ultra high degree geopotential models GPM98A, B and C to degree 1800. Joint meeting of the International Gravity Commission and International Geoid Commission, 7–12.
Wijaya, D. D., Muhammad, N. A., Prijatna, K., Sadarviana, V., Sarsito, D. A., Pahlevi, A., Variandy, E. D., & Putra, W. (2019). pyGABEUR-ITB: A Free Software for Adjusment of Relative Gravimeter Data. Jurnal Geomatika, 25(2), 95–102.
Zahorec, P., Papco, J., Pasteka, R., Bielik, M., Bonvalot, S., Braitenberg, C., Ebbing, J., Gabriel, G., Gosar, A., Grand, A., Götze, H. J., Hetényi, G., Holzrichter, N., Kissling, E., Marti, U., Meurers, B., Mrlina, J., Nogová, E., Pastorutti, A., … Varga, M. (2021). The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers. Earth System Science Data, 13(5), 2165–2209. https://doi.org/10.5194/essd-13-2165-2021.
Zhang, P., Li, Z., Bao, L., Zhang, P., Wang, Y., Wu, L., & Wang, Y. (2022). The Refined Gravity Field Models for Height System Unification in China. Remote Sensing, 14(6). https://doi.org/10.3390/rs14061437.