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Abstrak.  Algoritma Support Vector Machine (SVM) merupakan metode pembelajaran mesin yang 

dikenal memiliki akurasi tinggi dan efisiensi komputasi yang baik untuk aplikasi prediksi dan 

klasifikasi. Dalam studi ini, SVM diterapkan untuk memprediksi prosistas efektif dari data log 

sumur. Model prediksi dioptimalkan menggunakan modul GridsearhCV (GS CV) dan telah 

diterapkan pada  tujuh sumur dari lapangan 'Mentari', Indonesia. Dilakukan  enam variasi kombinasi 

pelatihan dan pengujian untuk mengevaluasi performa prediksi porositas efektif. Hasil terbaik 

diperoleh dari konfigurasi empat sumur pelatihan dan tiga sumur pengujian, dengan akurasi 

mencapai 71% dan  waktu latihan 1,98 detik. Hasil menunjukkan bahwa peningkatan jumlah data 

pelatihan dapat meningkatkan akurasi, meskipun dengan waktu komputasi yang lebih lama. Studi ini 

mengonfirmasi bahwa SVM memiliki kemampuan prediksi porositas efektif yang baik serta 

berpotensi menjadi alat bantu dalam mendukung dan menyederhanakan proses interpretasi geologi, 

khususnya pada tahap awal analisis dengan ketersediaan data pelatihan yang mencukupi. 

Kata Kunci: petrofisika; pembelajaran mesin; porositas efektif; prediksi; Support Vector Machine 

(SVM)  

 

Abstract.   
Support Vector Machine (SVM) algorithm is a machine learning method renowned for its high 

accuracy and computational efficiency in prediction and classification tasks. In this study, SVM was 

applied to predict effective porosity from well log data. The prediction model was optimized using 

GridsearhCV (GS CV) module and tested on seven wells from the 'Mentari' field, Indonesia. Six 

variations of training-testing configuration were evaluated to assess the prediction performance. The 

best ere acjieved using four training wells and three testing wells, yielding  an accuracy of 71% with 

training time of 1.98 seconds. The analysis revealed that increasing the volume of training data 

improves accuracy, albeit with longer computational time. This study confirms that SVM 

demonstrates strong predictive capability for effective porosity and has the potential to serve as a 

supporting tool in simplifying geological interpretation, particularly during the initial analysis stage 

when sufficient training data is available. 

Key word: petrophysics; machine learning; effective porosity; prediction; Support Vector Machine 

(SVM) 

 

 

INTRODUCTION  

Predicting effective porosity from well log data using statistical methods has been extensively 

studied in recent years. The initial approach, the multivariate linear regression (MLR) method, was 

introduced by Wendt et al. in 1986. Subsequent studies expanded upon this by incorporating 

multivariate non-linear regression (MNLR), which improved prediction accuracy and enabled the 

estimation of a broader range of data. These statistical techniques have been continously refined to 

enhance the reliability of well log data analysis, ensuring closer alignment between predictions and 

actual field measurements. One of the key objectives in this field of study is to accurately estimate 

effective porosity using well log data. 

Recent advancements in predictive modeling have led to the development of intelligent systems 

capable of autonomous learning. Machine learning techniques utilize computational methods to extract 

knowledge from data through supervised or unsupervised learning processes. The rapid evolution of 

machine learning algorithms and artificial intelligence (AI) methodologies has been driven by the 
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availability of large-scale datasets (big data) and the increasing accessibility of low-cost computing 

resources. Among various machine learning models, Support Vector Machine (SVM) has demonstrated 

high effectiveness in predicting effective porosity with improved accuracy. 

The SVM method was originally introduced by V.N. Vapnik and A.Y. Chervonenkis in 1964 as 

part of the "Generalized Portrait Method." The mathematical formulation of this approach was later 

detailed by Vapnik and Lerner (1963). SVM is a supervised machine learning technique that identifies 

the optimal hyperplane to separate data clusters into two or more classes while maximizing the margin 

between the hyperplane and the nearest data points, known as support vectors. In this study, Support 

Vector Regression (SVR), a regression-based variant of the SVM algorithm, was employed (Vapnik 

and Lerner,1963). SVR operates by segmenting the dataset into two classes using a hyperplane and 

establishing boundary lines that act as threshold values to encompass as many data points as possible 

(Che  and Wang, 2014. Data points located near these threshold boundaries are considered potential 

support vectors, with the most comprehensive coverage yielding the most effective model. The 

optimization process within this study aimed to minimize the margin (𝜀) and soft margin or slack 

variable (𝜉) between the hyperplane and observed data. To optimize the model, the GridSearchCV 

module was utilized to determine the best hyperparameters, such as C and epsilon, from a predefined 

grid (Figure 1). 

 
Figure 1. The parameters for the support vector regression (Aizerman and Braverman,1964) 

 

Several researchers have utilized the Support Vector Machine (SVM) algorithm for well log 

analysis and processing (Unpingco, 2019) . Hall (2016) applied SVM for facies classification based 

on well log data, while Halotel et al. (2020) implemented SVM to automate the facies classification 

process. Saroji et al. (2021) applied SVM for lithofacies classification using multi-well log data from 

an Indonesian oil field. Haqqi et al. (2023) used the XGBoost for effective porosity estimation. In a 

recent study, Nugroho  et al. (2024) used xgboost and random forest to estimate effective porosity and 

permeability on well log data in fajar field, south sumatera basin,indonesia. This study aims to estimate 

effective porosity from well log data in the Mentari Field, Indonesia, using  SVM method, while also 

assessing its validation and scalability. SVM algorithm is selected due to its stability and reliability in 

handling regression problems.  

 

RESEARCH METHOD  

This study utilizes well log  data from seven  wells (SM-01A, SM-03A, SM-10A, SM-11A, SM-

22A, SM-24A and SM-25A) in the Mentari field, South sumatera Basin, Indonesia. The primary logs 

used for predicting effective porosity(PHIE) include gamma ray (GR) , density (RHOB), resistivity 
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(ILD)  and neutron porosity (NPHI)  (Rider, 2002). SVM implementation was evaluated using six 

distinct training-validation data configurations (Table 1). 

 

Table 1. Variations in the distribution of sample data groups   for  training and evalution 

Variation 
SM-

25A 

SM-

01A 

SM-

03A 

SM-

10A 

SM-

11A 

SM-

22A 

SM-

24A 
Training Testing 

var 1 5% 95% 452 24632 

var 2 20% 80% 4481 20603 

var 3 33% 67% 11468 17715 

var 4 50% 50% 17399 13616 

var 5 69% 31% 17399 7685 

var 6 83% 17% 20017 5067 

n_data 452 4029 2888 4099 5931 2618 5067   

   

As addition for feature input data, we generated and calculated  onic log values (DT) and shale 

volume from others well log data.  We used the following Gardner’s Relationship for sonic log data 

generation from density log data (Gardner et al. 1974 )  

𝜌 = 𝛼𝑉𝑝
0.25      (1) 

The equation (1) represents the relationship between the velocity of the P wave (𝑉𝑝) and the 

density (𝜌). The conversion constant value (𝛼) is 0.31 when using velocity in meters per second (m/s) 

or 0.23 when expressed in feet per second (ft/s).  

The shale volume log is derived from the interpretation of gamma-ray log data, which indicates 

that gamma-ray values are higher in shale formations compared to sandstone lithology. The quantitative 

determination of shale volume is based on the assumption that the maximum gamma-ray log value 

within each well represents 100% shale, while the minimum value corresponds to the absence of shale, 

indicating sandstone lithology (Asquith and Gibson, 1982). The midpoint of this 0-100% scale serves 

as the boundary between these two lithologies and can be determined using a simple linear calculation, 

as outlined below. 

𝑉𝑠ℎ =
𝐺𝑅𝑙𝑜𝑔−𝐺𝑅𝑚𝑖𝑛

𝐺𝑅𝑚𝑎𝑥−𝐺𝑅𝑚𝑖𝑛
      (2) 

The formulation pertains to rock formation, which is categorized into clastic (e.g., Cibulakan and 

Talang Akar formations) and carbonate (e.g., Baturaja formation). Based on these two categories, 

each sample is classified into different groups, as shown in Table 2 and Figure 2. 

Table 2. Classification of sample data according to shale volume and lithological formations. 

Criteria Label 

Vsh < 0.5 and not Baturaja Fm Low GR (clastic) 

Vsh > 0.5 and not Baturaja Fm High GR (clastic) 

Vsh < 0.5 and Baturaja Fm 

Vsh > 0.5 and Baturaja Fm 

Low GR (carbonate) 

High GR (carbonate) 
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Figure 2. Interpretated well log data of SMR-24A. 

Figure 3 illustrates six variables that were analyzed using the SVM model to predict the effective 

porosity log. These variables (ILD, NPHI, DT, GR, RHOB, and VSH) are numerical data with the 

correlations between each feature depicted in the figure. Additionally, another variable is based on shale 

volume and rock formation. 

 
Figure 3.  the cross-correlation among six distinct features derived from the complete well log dataset. 

The basic idea of SVM (regression) algorithm to calculate flatness function defined by the following 

equation (Drucker et al., 1996).  

𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏       𝑤 ∈ 𝑋, 𝑏 ∈ 𝑅     (3) 

Where 𝑤 is weight, 𝑥 is support vector, and 𝑏 is coefficient. The equation aims to minimize w 

value and can be calculated by minimizing to the form ||𝑤||2 . This can be solved by convex 

optimization using following equation. 
1

2
||𝑤||2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗) ℓ
𝑖=0     (4) 

With the provision of 
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𝑦𝑖 − ⟨𝑤, 𝑥⟩ − 𝑏 ≤ 𝜀 + 𝜉𝑖    (5) 
⟨𝑤, 𝑥⟩ + 𝑏−𝑦𝑖  ≤ 𝜀 + 𝜉𝑖     (6) 

𝜉𝑖𝜉𝑖
∗ ≥ 0     (7) 

Eq.(…) is evaluated by a loss function where the prediction can be subject to a penalty or not. 

The simplest loss function is the 𝜀-insensitive loss function which has the following equation. 

𝐿𝜀(𝑦) = {
0, 𝑓𝑜𝑟 |𝑓(𝑥) − 𝑦| < 𝜀

|𝑓(𝑥) − 𝑦| − 𝜀, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
   (8) 

All deviation limits greater than 𝜀 will be penalized by C, where C is a positive constant value. 

The optimal solution to optimize hyperplane is using Lagrange multiplier so that the equation 𝑤 can be 

simplified to 

𝑤 = (𝑎𝑖 − 𝑎𝑖
∗)𝑥𝑖     (9) 

So, the optimization on the hyperplane can be written to. 

𝑓(𝑥) = (𝑎𝑖 − 𝑎𝑖
∗)⟨𝑥𝑖, 𝑥⟩ + 𝑏    (10) 

With 𝑎𝑖 − 𝑎𝑖
∗  is Lagrange multiplier calculation from weights. In this research, SVR algorithm 

implemented on non-linear dataset so that the values of 𝑥𝑖 and 𝑥 transformed into a space feature in 

high dimensions by mapping the vectors 𝑥𝑖 and 𝑥 into the kernel function. Finally, the optimization 

equation becomes. 

  𝑓(𝑥) = (𝑎𝑖 − 𝑎𝑖
∗)𝐾⟨𝑥𝑖, 𝑥⟩ + 𝑏    (11) 

With K is kernel functions. The principle of SVR algorithm determined by the type of kernel function 

to be used and the kernel parameter settings (12). In this study, the authors use the Radial Basis Function 

(RBF) kernel with the following equation. 

𝐾⟨𝑥𝑖, 𝑥⟩ = 𝑒𝑥𝑝
‖𝑥𝑖−𝑥‖2

2𝜎2     (12) 

Based on these equations, there are three important hyperparameters that must be initialized 

during optimization such as constraint violation (C), epsilon, and gamma. The value of C shows the 

tradeoff of the complexity in decision-making rules and calculated loss function. Epsilon shows the 

smoothness effect of SVR and generalizability and complexity of the models. And gamma related to 

minimize the occurrences of underfitting and overfitting. In this studied, authors just tunning C and 

epsilon value using GridSearchCV module  

Table 3. The pseudo code of  SVM algorithm 

Algorithm. Support Vector Machine (Regression) 

1. Initialize 𝑎𝑖 = 0, 𝑎𝑖
∗ = 0, and matrix calculate with 𝑅𝑖𝑗 = (𝐾(𝑥𝑖 , 𝑥) + 𝜆2) for 𝑖, 𝑗 = 1, … 𝑛 

2. For every training data calculate: 

a. 𝐸𝑖 = 𝑦𝑖 − ∑ (𝑎𝑗
∗ − 𝑎𝑗)1

𝑗=1 𝑅𝑖𝑗 

b. 𝛿𝑎𝑖
∗ = 𝑚𝑖𝑛{𝑚𝑎𝑥[𝛾(𝐸𝑖 − 𝜖), −𝑎𝑖

∗], 𝐶 − 𝑎𝑖
∗} 

𝛿𝑎𝑖 = 𝑚𝑖𝑛{𝑚𝑎𝑥[𝛾(𝐸𝑖 − 𝜖), −𝑎𝑖], 𝐶 − 𝑎𝑖} 

c. 𝑎𝑖
∗ = 𝑎𝑖

∗ + 𝛿𝑎𝑖
∗ and 𝑎𝑖 = 𝑎𝑖 + 𝛿𝑎𝑖 

3. Calculate using regression function: 𝑓(𝑥) = (𝑎𝑖 − 𝑎𝑖
∗)𝐾⟨𝑥𝑖, 𝑥⟩ + 𝜆2  

4. with K is RBF (Radial Basis Function) kernel function: 𝐾⟨𝑥𝑗 , 𝑥⟩ = 𝑒𝑥𝑝
‖𝑥𝑖−𝑥‖2

2𝜎2  
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RESULTS AND DISCUSSION  

The Support Vector Machine (SVM) algorithm requires the configuration of several 

hyperparameters before training, a process known as hyperparameter tuning. The main objective of this 

process is to tailor the model to the variability inherent in the dataset—well log data in this case. Proper 

hyperparameter tuning is essential for enhancing the model’s ability to predict effective porosity 

accurately. 

Hyperparameter tuning was performed manually using the GridSearchCV (GS) module. This 

module systematically evaluates all possible combinations of hyperparameter values within the 

predefined grid and identifies the set that yields the optimal performance. The results for various 

hyperparameters of the SVM algorithm are presented in Table 4. 

 
Table 4.  Hyperparameter value tunning using GridSearchCV (GS) 

Hyperparameter grid Default GS-SVM 

C [0.1, 1, 10, 100] 1.0 0.1 

epsilon [0.01, 0.02, 0.04, 0.06, 0.08, 0.1] 0.1 0.02 

To assess performance of the GridSearchCV in the SVM model, three evaluation metrics were 

used including: the R² score as the scoring metric, and RMSE (Root Mean Squared Error) and MAE 

(Mean Absolute Error) as error metrics. These three indicators are defined by the following equations 

(Karunasingha, 2022). 

𝑅2(𝑦, 𝑝) = 1 −
∑ (𝑦𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1

     (13) 

𝑒𝑟𝑚𝑠𝑒(𝑦, 𝑝) = √
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)2𝑛−1

𝑖=0      (14) 

𝑅2(𝑦, 𝑝) =
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)2𝑛−1

𝑖=0                                       

(15) 

 

In this context, 𝑦𝑖 represents the actual effective porosity value, while 𝑝𝑖  denotes the predicted effective 

porosity obtained from the application of the SVM method. The results of the model evaluation, based 

on the three indicators and their respective training times, along with six variations of the training-

evaluation process, are presented in the following figures 

 
(a)      (b) 

Figure 4.  The R2 score value from  the model evaluation  using  3 indicators (a) and consuming training time 

(b) 
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Quantitative results, as shown in Figure 4, indicate that the model's performance significantly 

improves as the amount of training data increases. The worst performance was observed in the first 

training scenario, which involved testing on six wells and resulted in a high error rate and a negative R² 

score of -11%. The R² score becomes positive when he model is trained on data from more than two 

wells, with the best performance achieved using six wells for training and one for testing, yielding an 

accuracy of approximately 75%. 

While model accuracy generally increases with the number of training wells, this comes at the 

cost of longer training time, ranging from 0.01 to 5.74 seconds, demonstrating the model's scalability. 

With about 20,000 training samples from six wells, the SVM model reached an effective porosity 

prediction accuracy of 75.07%, with a training time of 5.74 seconds. Moreover, the model achieved a 

slightly lower accuracy of 71.23% when trained with four wells, but with a training time that was three 

times faster. However, training with five wells led to a significant drop in accuracy, indicating that a 

larger dataset does not always guarantee better performance. The most balanced and stable performance 

was observed when the model was trained on four wells and tested on three, making this configuration 

the most optimal. Under these conditions, the SVM model demonstrated reliable accuracy with a 

reduced training time of 1.98 seconds compared to the maximum of 5.74 seconds when using six wells. 

 

 
(a) (b) 

 
Figure 4. Cross plot of predicted-actual data of effective porosity log using SVM algorithm (a) and product of 

blind test(b). 

Figure 4 presents a cross plot that illustrates how the predicted values (represented by the red 

line) closely align with the actual effective porosity data. The majority of the effective porosity values 

fall within the range of 0.01 to 0.25, indicating a strong correlation between the predicted and actual 

data. However, outside this range, some data points deviate from the red line, reflecting poorer 

estimation accuracy. This pattern is consistent with the blind well test results, where inaccuracies were 

noted for samples in the 6000-8000 range. It is clear that the model faces difficulties in accurately 

predicting effective porosity values above 0.25, likely due to a lack of sufficient data for this range. 

 

CONCLUSION  

Effective porosity prediction can be achieved using the Support Vector Machine (SVM) 

algorithm, combined with the GridSearchCV module for hyperparameter tuning. The best evaluation 
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result yielded an accuracy of approximately 71% and a training time of around 1.98 seconds. Model 

performance improves with increased training data, peaking at four training wells, after which accuracy 

fluctuates, indicating potential overfitting. While the model performs well in predicting porosity values 

between 0.01 and 0.25, it struggles to accurately predict values exceeding 0.25. 
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