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Local Stability Analysis of Mathematic Model
SEIHR-VW on Dengue Haemorrhagic Fever

Transmission
Nolaika Arsiani Norramandhany1 Widowati2 and Redemtus Heru Tjahjana2

Abstract—Dengue fever is caused by the dengue virus (DENV)
and is mainly transmitted by mosquitoes, particularly Aedes
aegypti. In this study, we develop a mathematical model to
describe and analyze how dengue spreads within a population.
The mathematical model is expressed as a nonlinear system of dif-
ferential equations and consists of seven compartments (SEIHR-
VW): susceptible, exposed, infected, hospitalized, and recovered
humans, along with susceptible and infected mosquitoes. The
model has two possible equilibrium points: a non-endemic and
endemic equilibrium point. To better understand the dynamics of
the model, we calculate the basic reproduction number (ℜ0) using
the Next Generation Matrix (NGM) method, and then the Routh-
Hurwitz criterion method is applied to analyze the local stability
of both equilibrium points. The results indicate that the non-
endemic equilibrium point is asymptotically stable when ℜ0 < 1,
while the endemic equilibrium point becomes asymptotically
stable when ℜ0 > 1. In general, our analysis concludes that the
proposed dengue transmission model is asymptotically stable at
the endemic equilibrium point, with ℜ0 = 3.85011.

Index Terms - Local Stability Analysis, Dengue Transmission,
Mathematical Modeling.

I. INTRODUCTION

DENGUE Haemorrhagic Fever (DHF) is one of the fastest
spreading vector-borne diseases. It is caused by the

dengue virus (DENV) and transmitted to humans through
the bite of female Aedes aegypti mosquito [1]. The dengue
virus belongs to the genus Flavivirus, family Flaviviridae, and
to date four serotypes have been identified: DEN-1, DEN-2,
DEN-3, DEN-4, each of which triggers a different immune
response in the human body [2]. DHF has become a seasonal
disease and remains a major health problem in tropical and
subtropical countries, including Indonesia.

In April 2024, the World Health Organization (WHO)
announced that around half of the world’s population is
now at risk of dengue fever, with an estimated 100-400
million infections occurring each year [3]. Currently, DHF
is an endemic disease in more than 100 countries within
WHO regions, including Africa, the Americas, the Eastern
Mediterranean, Southeast Asia, and the Western Pacific [3]. In
Indonesia, according to data released by the Ministry of Health
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in November 2024, through its official website, there were
114,720 cases of dengue infection in 2023, with 894 reported
deaths. Until the 43rd week of 2024, a total of 210,644 cases of
dengue infection have been reported, with 1,239 deaths caused
by DHF occurring in 259 districts / cities in 32 provinces [4].

A possible effort to control the spread of DHF is through
research and operational studies in applied technology and epi-
demiology, where analysis in these fields requires a significant
role for mathematics, particularly mathematical modeling. A
mathematical model is a representation that uses mathematical
structure and expressions to explain and understand real-
world problems [5], [6]. As a branch of applied mathematics,
mathematical modeling provides a systematic framework for
translating complex phenomena into mathematical language,
thereby allowing for deeper insights and more accurate anal-
ysis [7]. In the context of infectious disease transmission,
mathematical modeling is especially important, as it can be
used to predict outbreaks, assess the impact of interventions,
and evaluate control strategies [8], [9], [10].

Many mathematical models have been introduced to un-
derstand how dengue transmission depends on several impor-
tant factors. Chen and Hsieh [11] proposed a mathematical
model on dengue transmission by considering the effect of
temperature. They found that a higher transmission of dengue
occurred when the temperature was equal to 28°C. Recent
studies on mathematical modeling have used dengue incidence
data from varioues regions, including Kupang [12], Palu [13],
Semarang [14] and China [15]. Some examples of previous
studies with complex mathematical models are as follows:
The SIAPR-SI model was proposed by Asamoah et al. [16],
considers compartments of individuals with temporary (partial)
immunity and asymptomatic infected individuals. Another
study by Khan, M. A and Fatmawati [17], analyzed the spread
of dengue fever using the SEIHR-SEI model, which involves
a hospitalized/notified infectious human subpopulation and an
exposed mosquito subpopulation. They also applied optimal
control strategies to investigate the impact of prevention and
insecticide use on reducing dengue transmission. In 2019,
Indrajit Gosh et al. [18] analyzed a dengue transmission model
using the S1S2EAIPR− SEI, which considers high-risk and
low-risk susceptible individuals, asymptomatic individuals,
hospitalized/notified individuals, and exposed mosquitoes as
model variables.

Another study reported in 2018 by Agusto and Khan [19],
proposed the SVEIR-SEI model, which includes a vaccinated
human subpopulation and an exposed mosquito subpopulation.
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They also applied optimal control strategies to investigate the
impact of vaccination and insecticide use in reducing dengue
transmission. Next, in 2022, Abidemi and Aziz [20] proposed
the SVEIR-ASEI model, which includes a vaccinated human
subpopulation and a mosquito subpopulation in the aquatic
phase, while also analyzing the impact of three optimal control
strategies: vaccination, treatment, and insecticide application.
The study by Aldila et al. [21] analyzed the SAEIHR-VW
model for dengue transmission, which involves a compartment
for susceptible individuals who are aware of dengue infection
and considering factors such as: the impact rate of media
campaigns, case detection and hospital capacity as parameters
in the model.

Motivated by the literature above, this study focuses on the
development of a host-vector model for dengue transmission
by incorporating the hospitalization of infected cases. The
human population (host) is modeled using the SEIHR model,
while the mosquito population (vector) is modeled using the
VW model. Based on the previous study by Aldila et al.
[21], this research introduces two additional parameters into
the SEIHR-VW model: the hospitalization rate of infected
individuals and the recovery rate of hospitalized individuals.
Despite these additions, the compartment for aware suscepti-
ble individuals (A) is not included, consequently, the media
campaign parameter, which is directly associated with the (A)
compartment, is also omitted. This decision is based on the
observation that, in reality, increasing public awareness of the
dangers of dengue infection is extremely challenging, even
with media campaigns from government. Individual awareness
tends not to be long-lasting, as people eventually become
careless.

Furthermore, this study excludes the parameters for case
detection and hospital capacity, as reported in [21], these
factors were found to have minimal impact on reducing
dengue transmission. Additionally, this research considers that
recovered individuals may lose their temporary immunity
over time, allowing for the possibility of reinfection as they
return to the susceptible subpopulation (relapse cases). Based
on the model, the basic reproduction number (ℜ0) will be
determined, and both the disease-free equilibrium point (DFE)
and the endemic equilibrium point (EE) will be obtained.
Using the value of ℜ0 and these equilibrium points, a local
stability analysis will be conducted using the Routh-Hurwitz
criterion. Finally, a numerical simulation will be conducted to
observe the dynamic behavior of dengue transmission using
the modified model.

II. MATHEMATICAL MODEL FORMULATION

The spread of dengue model in this article, represent the
interaction between seven subpopulations, that divided into
five human population (host), S denotes susceptible popula-
tion vulnerable to mosquito bites, E denotes the population
exposed to dengue infection, I and H denotes for the non-
hospitalized and hospitalized infected populations and R de-
notes the recovered population from dengue infection that
has temporal immunity to dengue virus. Thus, total human
population denoted by Nh is given as Nh = S+E + I+H +R.

On the other hand, the population of mosquitoes (vector)
divided into V dan W denotes for susceptible mosquitoes and
infected mosquitoes. Thus, total mosquito population denoted
by Nm = V +W . A transmission diagram to describe all the
above interaction between compartments is provided in Fig.
1, and the description of the parameters are given in Table 1.

The interaction starts from individuals entering the human
population, who are assumed to be newborns with a recruit-
ment rate of θh, and are considered to always be in a healthy
condition. Migration is considered negligible in this model.
The next stage involves direct interaction between mosquitoes
and humans, in which infected mosquito subpopulations (W )
bite susceptible individuals (S) at an infection rate denoted
by βh. As a result, susceptible individuals who are bitten
by infected mosquitoes transition into the exposed or latent
human subpopulation (E). After an incubation period of the
dengue virus (approximately 8 days), exposed individuals will
become infectious individuals that are non-hospitalized (I)
and hospitalized infectious individuals (H), with infection rate
denoted by q1δ and q2δ .

Individuals in the infected subpopulation can become part
of the hospitalized subpopulation with transmission rate ω ,
because the dengue disease has progressed to a more severe
state than before, thus requiring more intensive care in the
hospitals. Then, infected individual is assumed to recover at
a constant rate ρ1, while the hospitalized individual recover
by ρ2. The number of recovered individual subpopulation (R)
increases due to the recovery of infected and hospitalized
individuals, the R decrease because of the loss of temporal
immunity at a rate of η . All the human populations are
assumed to have decreased due to the natural death rate of
µh. Then for the susceptible mosquitoes (V ) will increase due
to the birth of newborns with a natural birth rate of θm and
decrease due to the presence of mosquitoes infected with the
dengue virus.

The susceptible mosquitoes get infected by dengue virus
(DENV) after they bite infected individuals in I or H, at

Fig. 1: Transmission Diagram of System (1).
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TABLE I: Description of Parameter in System (1).

Par Description Units
θh Recruitment rate of human

population.

individual
day

θm Recruitment rate of
mosquito population.

mosquitoes
day

NH Total of human population. individual
NM Total of mosquito popula-

tion.
mosquitoes

µh Natural death rate of hu-
man population.

1
day

µm Natural death rate of
mosquito population.

1
day

βh Infection rate for human
population.

individual
day×mosquitoes

βm Infection rate for mosquito
population.

1
day

δ Transition rate due to virus
incubation period.

1
day

q1 Proportion of exposed in-
dividuals who become in-
fected but are not hospital-
ized.

-

q2 Proportion of exposed in-
dividuals who become in-
fected and are hospital-
ized.

-

ω Rate of hospitalization
and/or notification
of infected human
subpopulation.

1
day

ρ1 Recovery rate of infected
human subpopulation.

1
day

ρ2 Recovery rate of hospital-
ized human subpopulation.

1
day

η Waning rate of temporal
immunity.

1
day

infection rate βm. We assumed that the number of susceptible
and infected mosquitoes decreases due to the natural death
rate µm. We do not include the recovered stage of mosquitoes
because it has short life time period, which does not give a
chance to mosquitoes to recover from dengue infection. The
mathematical model describe transmission of dengue infection
in this article is given by the following system of ordinary

differential equations (1):

dS
dt

= θh +ηR−βh
S
N

W −µhS,

dE
dt

= βhW
S
N
−q1δE −q2δE −µhE,

dI
dt

= q1δE − (ρ1 +µh +ω)I,

dH
dt

= q2δE +ωI −ρ2H −µhH,

dR
dt

= ρ1I +ρ2H − (η +µh)R,

dV
dt

= θm −βmV
I +H

N
−µmV,

dW
dt

= βmV
I +H

N
−µmW,

(1)

Initial state: S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,H(0) ≥ 0,R(0) ≥
0,V (0)≥ 0,W (0)≥ 0.

Because the life time period of mosquitoes is shorter than
that human µ−1

m ≪ µ
−1
h , thats make the mosquito population

has a faster dynamic, compare to the human population, to
reach its equilibrium point. Hence, this study used the Quasi
Steady-State Approximation (QSSA) method to approach sys-
tem (1) when the mosquito population has already reached
its equilibrium [21]. Therefore, solving dV

dt = 0 and dW
dt = 0

considering V and W , we obtain V ∗ and W ∗,

V ∗ =
θmN

βm(I +H)+µmN
.

W ∗ =
θmβm(I +H)

µm (βm(I +H)+µmN)
.

This article used the same assumption as in [21], where
βmµm = 1

2 , assume that N is constant, and βhθm
µmN = β and

2µ2
m = µv. Then, substituting V ∗ and W ∗ into system (1), we

obtain,

dS
dt

= θh +ηR−
(

βS(I +H)

(I +H)+µvN

)
−µhS,

dE
dt

=

(
βS(I +H)

(I +H)+µvN

)
−q1δE −q2δE −µhE,

dI
dt

= q1δE − (ρ1 +µh +ω)I,

dH
dt

= q2δE +ωI −ρ2H −µhH,

dR
dt

= ρ1I +ρ2H − (η +µh)R.

(2)

III. RESULTS AND ANALYSIS

A. Basic Reproduction Number

The basic reproduction number (ℜ0) is the average number
of new infection cases generated by subpopulations that can
transmit the infection. If ℜ0 > 1, then each infected individual
can spread the disease to more than one susceptible individual,
potentially leading to an epidemic because the disease-free
equilibrium (DFE) point becomes unstable [22]. However, if
ℜ0 < 1, the DFE point will be locally asymptotically stable
and the situation can be brought under control [23], [24].
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We obtain the basic reproduction number (ℜ0) using the
next-generation matrix (NGM) approach, based on the number
of infected individuals in the dengue model described in
system (2) [24]. The infected compartments are represented
by E, I, H, and R. Let x = (E, I,H,R) and rewrite system (2)
as follows:

dx
dt

= F(x)−V (x),x = [E, I,H,R]T

F(x) =


F1
F2
F3
F4

=


βS(I+H)

(I+H)+µvN
0
0
0

 ,

V (x) =


V1
V2
V3
V4

=


(q1δ +q2δ +µh)E

(ρ1 +µh +ω)I −q1δE
ρ2H +µhH −q2δE −ωI
(η +µh)R−ρ1I −ρ2H

 .

Matrix F (E 0) and V (E 0) are represented for the Jacobian
matrices of F(x) and V (x) at a non-endemic equilibrium point
E 0 = (S0,E0, I0,H0,R0) =

(
θh
µh
,0,0,0,0

)
. Then, using NGM

approach, NGM = F (E 0)×V −1(E 0), we can determine the
largest eigen value of the matrix NGM. The reproduction
number obtained are as follows:

ℜ0 =
βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv (δ (q1 +q2)+µh)(ρ1 +µh +ω)(ρ2 +µh)

B. Equilibrium Points

The mathematical model for dengue spread in system (2)
has an equilibrium point if it’s satisfied:

dS
dt

=
dE
dt

=
dI
dt

=
dH
dt

=
dR
dt

= 0. (3)

System (2) has two equilibrium points known as endemic
equilibrium (EE) denoted by E ∗ = (S∗,E∗, I∗,H∗,R∗) and
disease-free/non-endemic equilibrium (DFE) denoted by E 0 =

(S0,E0, I0,H0,R0) =
(

θh
µh
,0,0,0,0

)
. Hence, we calculate the

form of the endemic equilibrium point (EE) using Maple
software and obtain the values E ∗ = (S∗,E∗, I∗,H∗,R∗) as
follows:

S∗ = NB(µv(η(Aδ+(ρ2+µh)(ρ1+µh+ω))+B)+Aδ (η+µh))
Aδ (βη(Aδ+(ρ2+µh)(ρ1+µh+ω))+B(η+µh+β )) ,

E∗ =− N(η+µh)(ρ2+µh)(ρ1+µh+ω)(µvB−δβA)
Aδ (βη(Aδ+(ρ2+µh)(ρ1+µh+ω))+B(η+µh+β )) ,

I∗ =− Nq1(η+µh)(ρ2+µh)(µvB−δβA)
A(βη(Aδ+(ρ2+µh)(ρ1+µh+ω))+B(η+µh+β )) ,

H∗ =− N((q1+q2)ω+(µh+ρ1)q2)(η+µh)(µvB−δβA)
A(βη(Aδ+(ρ2+µh)(ρ1+µh+ω))+B(η+µh+β ))

R∗ =−N((q1+q2)ρ2(ρ1+ω)+(q1ρ1+q2ρ2)µh)(µvB−δβA)
A(βη(Aδ+(ρ2+µh)(ρ1+µh+ω))+B(η+µh+β )) ,

with values of A and B as follows:
A = ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1),

B = (δ (q1 +q2)+µh)(ρ1 +µh +ω)(ρ2 +µh).

C. Stability Analysis

Stability analysis is used to determine the behavior around
the equilibrium point. Non-endemic equilibrium point (DFE)
is the case in which there are no individuals infected by dengue

disease in a population. Then, the local stability analysis of
the non-endemic equilibrium point for system (2) is expressed
in the following theorem.

Theorem 1. If ℜ0 < 1 then non-endemic equilibrium point
E 0 = (S0,E0, I0,H0,R0) is locally asymptotically stable and if
ℜ0 > 1, then E 0 = (S0,E0, I0,H0,R0) is unstable [24].

Proof:
Assume E 0 = (S0,E0, I0,H0,R0) =

(
θh
µh
,0,0,0,0

)
, we can

determine the eigen values of the Jacobian matrix at E 0:

det(J(E 0)−Y I) = 0

Then, the characteristic equation is obtained, as follows:

(Y +µh)(Y +η +µh)(a0Y 3 +a1Y 2 +a2Y +a3) = 0

with,

a0 = 1,
a1 = 3µh +q1δ +q2δ +ω +ρ1 +ρ2,

a2 = 3µh
2 +2(ω +ρ1 +ρ2)µh +ρ2(ω +ρ1)

+δ (q1 +q2)(2µh +ω +ρ1 +ρ2)− (
βδ (q1 +q2)

µv
),

a3 = (µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)

− (
βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv
).

According to the Routh-Hurwitz criterion, E 0 is locally
asymptotically stable if the coefficients of its characteristic
equation have a negative root or a negative real part and its
can satisfy the conditions if a1,a2,a3 > 0 and a1a2−a0a3 > 0.

• First, it will be shown that a1 > 0,
with a1 = 3µh +q1δ +q2δ +ω +ρ1 +ρ2,
because µh,δ ,q1,q2,ω,ρ1,ρ2 > 0,
then a1 = 3µh +q1δ +q2δ +ω +ρ1 +ρ2 > 0.

• Second, shown that a2 > 0, with

a2 = 3µh
2 +2(ω +ρ1 +ρ2)µh +ρ2(ω +ρ1)

+δ (q1 +q2)(2µh +ω +ρ1 +ρ2)− (
βδ (q1 +q2)

µv
).

Denoted:

A = (3µh
2 +2(ω +ρ1 +ρ2)µh +ρ2(ω +ρ1)

+δ (q1 +q2)(2µh +ω +ρ1 +ρ2))µv,

B = (q1 +q2),

we can write the equation of a2 as follows:

a2 =
µv

µv
(3µh

2 +2(ω +ρ1 +ρ2)µh +ρ2(ω +ρ1)

+δ (q1 +q2)(2µh +ω +ρ1 +ρ2))−
βδ (q1 +q2)

µv
,

a2 =
A

µv
− βδB

µv
,

Since the denominator (µv) is positive, a2 is positive only
when the numerator is also positive. Hence, the resulting
equation is as follows:
A −βδB > 0.
So that, the condition for a2 > 0 is fulfilled if A > βδB,
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• Third, shown that a3 > 0, as follows:

a3 = (µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)

− (
βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv
),

a3 =
µv(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)

µv

− (
βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv
).

Since the denominator (µv) is positive, a3 is positive, only
when the numerator is also positive. Hence, the resulting
equation is as follows:

µv(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)

−βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)> 0,

⇐⇒βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv

< (µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh),

⇐⇒ βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)
< 1,

ℜ0 < 1.

This indicates that if ℜ0 < 1 then a3 > 0. (as proven).
• Then, shown that a1a2 −a0a3 > 0, with a0 = 1, it can be

written as follows:

a1a2 −a3 = (3µh +q1δ +q2δ +ω +ρ1 +ρ2)

(
µv

µv
(3µh

2 +2(ω +ρ1 +ρ2)µh +ρ2(ω +ρ1)

+δ (q1 +q2)(2µh +ω +ρ1 +ρ2))−
βδ (q1 +q2)

µv
)

− (
µv(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)

µv

− βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv
),

with denoted:

C = (3µh +q1δ +q2δ +ω +ρ1 +ρ2),

D = (3µh
2 +2(ω +ρ1 +ρ2)µh +ρ2(ω +ρ1)

+δ (q1 +q2)(2µh +ω +ρ1 +ρ2))µv,

E = βδ (q1 +q2),

F = βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1),

and then we can write the equation of (a1a2 − a3) as
follows:

a1a2 −a3 =
C (D −E )

µv
+(

F

µv

(
(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)µv

(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)µv
))

− µv

µv
(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh),

a1a2 −a3 =
C (D −E )

µv

+(
(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)µv

µv

(
βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)
−1)),

a1a2 −a3 =
C (D −E )

µv

+(
(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)µv

µv

(ℜ0 −1)).

Since the denominator (µv) is positive, (a1a2 − a3) is
positive, only when the numerator is also positive. Hence,
the resulting equation is as follows:

C (D −E )+(µh +ρ2)(ω +ρ1 +µh)µv

((q1 +q2)δ +µh)(ℜ0 −1),
(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)µv(ℜ0 −1)

>−C (D −E ),

(µh +ρ2)(ω +ρ1 +µh)((q1 +q2)δ +µh)µv(1−ℜ0)

< C (D −E ).

Then, the condition for (a1a2 − a3 > 0) is fulfilled if
(µh + ρ2)(ω + ρ1 + µh)((q1 + q2)δ + µh)µv(1 − ℜ0) <
C (D −E ).

So, based on the proof analysis above, it can be concluded
that if a1,a2.a3 > 0 and a1a2−a0a3 > 0 are satisfied, then the
coefficients of the characteristic equation will have a negative
root or a negative real part. Therefore, it can be stated that
the non-endemic equilibrium point E 0 = (S0,E0, I0,H0,R0) =(

θh
µh
,0,0,0,0

)
is locally asymptotically stable. ■

This can be interpreted that each actively infected indi-
viduals only able to infect/transmit the disease to less than
one susceptible individual, which implies that, over time, the
disease will naturally disappear (disease-free).

Theorem 2. If ℜ0 > 1 then endemic equilibrium point E ∗ =
(S∗,E∗, I∗,H∗,R∗) is locally asymptotically stable and if ℜ0 <
1, then E ∗ = (S∗,E∗, I∗,H∗,R∗) is unstable [24].

Proof:

Assume E ∗ = (S∗,E∗, I∗,H∗,R∗), we can determine the
eigen values of the Jacobian matrix at E ∗:

det(J(E ∗)−Y I) = 0

Then, the characteristic equation is obtained, as follows:

(Y +µh)(a0Y 4 +a1Y 3 +a2Y 2 +a3Y +a4) = 0

with,

a0 = 1,

a1 =
A∗β

µvN +A∗ +((q1 +q2)δ +ω +ρ1 +ρ2 +η +4µh),
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a2 =
β

(µvN +A∗)2 (δ (q1 +q2)(Nµv(A∗−S∗)+A∗2)

+A∗(ω +ρ1 +ρ2 +η +3µh)(µvN +A∗))+6µh
2

+((q1 +q2)(ω +ρ1 +ρ2 +η +3µh)δ

+3µh(ω +ρ1 +ρ2 +η)+ρ2(ω +ρ1 +η)

+η(ω +ρ1)),

a3 =
1

(µvN +A∗)2 (β (A
∗(µvN +A∗)(((q1 +q2)δ +2µh)

(ω +ρ1 +ρ2 +η)+2µhδ (q1 +q2)+3µh
2

+(ρ2 +η)(ω +ρ1)+ηρ2)− ((q1 +q2)

(ω +η +2µh)+q1ρ2 +q2ρ1)S∗µvNδ ))

+(3µh
2 +2µh(ω +ρ1 +η)+η(ω +ρ1)

+(ω +ρ1 +η +2µh)ρ2)(q1 +q2)δ +4µh
3

+3µh
2(ω +ρ1 +ρ2 +η)+2µh(ρ2 +η)(ω +ρ1)

+ηρ2(ω +ρ1 +2µh),

a4 =
1

(µvN +A∗)2 (β (A
∗(µvN +A∗)(((q1 +q2)(µh +ω)

+ρ1q2 +ρ2q1)δη +(µh +ρ2)(ω +ρ1 +µh)

(η +µh +(q1 +q2)δ ))−µvNS∗(η +µh)

(((q1 +q2)(µh +ω)+ρ1q2 +ρ2q1)δ ))+(µh +ρ2)

(ω +ρ1 +µh)(µh +(q1 +q2)δ )(η +µh).

with,

A∗ = I∗+H∗

=
NµvB(η +µh)(ℜ0 −1)

βη(Aδ +(µh +ρ2)(ω +ρ1 +µh))+B(η +µh +β )
.

According to the Routh-Hurwitz criterion, E ∗ is locally
asymptotically stable if all the roots of the characteristic
polynomial are negative as shown below:

First, shown that Y1 +Y2 +Y3 +Y4 =− b
a < 0, with value of b

and a as follow:

a = a0 = 1

b = a1 =
A∗β

µvN +A∗ +((q1 +q2)δ +ω +ρ1 +ρ2

+η +4µh)

We found,

Y1 +Y2 +Y3 +Y4 =−b
a
=

− βB(η +µh)(ℜ0 −1)
βη(Aδ +(ρ2 +µh)(ρ1 +µh +ω))+B((η +µh)ℜ0 +β )

− βη(Aδ +(ρ2 +µh)(ρ1 +µh +ω))+B((η +µh)ℜ0 +β )

βη(Aδ +(ρ2 +µh)(ρ1 +µh +ω))+B((η +µh)ℜ0 +β )

((q1 +q2)δ +ω +ρ1 +ρ2 +η +4µh)

Since the denominator is positive, (Y1 +Y2 +Y3 +Y4) is nega-
tive, only when the numerator is negative. Hence, the resulting
equation is as follows:

−(βB(η +µh)(ℜ0 −1)+(βη(Aδ +(ρ2 +µh)

(ρ1 +µh +ω))+B((η +µh)ℜ0 +β ))

((q1 +q2)δ +ω +ρ1 +ρ2 +η +4µh))< 0.

Then, the condition above is fulfilled, if the value of (ℜ0 −1)
must be positive,
(ℜ0 −1)> 0,
ℜ0 > 1

Using the same method, we can obtain for,

Second, Y1Y2 +Y1Y3 +Y1Y4 +Y2Y3 +Y2Y4 +Y3Y4 =
c
a > 0, with

value of c = a2 and a = a0.

Third, Y1Y2Y3+Y1Y2Y4+Y2Y3Y4 =− d
a < 0, with value of d = a3

and a = a0.

Fourth, Y1Y2Y3Y4 =
e
a > 0, with value of e = a4 and a = a0.

According to the analysis, a fourth-degree polynomial sat-
isfies the requirements and ℜ0 > 1, with result showing that
the roots of this polynomial have negative real parts. So, the
endemic equilibrium points E ∗ = (S∗,E∗, I∗,H∗,R∗) is locally
asymptotically stable, if ℜ0 > 1. ■

This can be interpreted that each actively infected individual
is able to transmit the disease to multiple susceptible individ-
uals, which implies that the disease will spread throughout the
population.

D. Numerical Simulation
The numerical simulation of the dengue transmission model

is performed using Maple software. The initial values of
S(0),E(0), I(0),H(0),R(0),V (0),W (0) and the parameter val-
ues used in the simulation are shown in Table 2. Several
parameter values in Table 2 were adopted from Aldila et al.
[21], which analyzed dengue case data from Jakarta Province
in 2020. These values are considered relevant for this study
because Jakarta shares comparable epidemiological character-
istics with other Indonesian regions, particularly its tropical
climate and the common vector Aedes aegypti. Moreover, these
parameters are relatively stable over time, as they primarily
represent biological and healthcare system factors that do not
change substantially within a short annual period. Due to
the unavailability of complete and updated dengue case data
for several required variables in the target city of this study,
these literature-based parameters were therefore employed to
conduct numerical simulations.

The parameters labeled as ”Estimated” in Table 2 were de-
rived using demographic and clinical assumptions commonly
applied in dengue epidemiological modeling. Specifically, the
human recruitment rate (θh) and natural death rate (µh) were
calculated based on the total human population (1670379)
and an average human life expectancy of 65 years. The
hospitalization rate of infected individuals (ω) was obtained as
the inverse of the hospitalization period of 6 days, while the
recovery rate of hospitalized individuals (ρ2) was estimated
as the inverse of an average recovery duration for hospitalized
individuals of approximately 7 days.

Based on the substitution of the parameter values from Table
2 into the basic reproduction number formula, the number of
susceptible individuals that can be infected by three infected
individual was determined.

ℜ0 =
βδ ((q1 +q2)(µh +ω)+q1ρ2 +q2ρ1)

µv (δ (q1 +q2)+µh)(ρ1 +µh +ω)(ρ2 +µh)
,

ℜ0 = 3.85011.
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TABLE II: Parameter Values for The Dengue Model Numeric
Simulation.

Par Values References

θh
1670379
65×365

= 70.40586 Estimated

µh
1

65×365
= 0.00004 Estimated

µv 0.00454 [21]
β 0.00200 [21]

δ
1
8
= 0.12500 [21]

q1 0.83100 [21]
q2 0.16900 [21]

ω
1
6
= 0.16667 Estimated

ρ1 0.07143 [21]

ρ2
1
7
= 0.14285 Estimated

η 0.02778 [21]

Since the basic reproduction number is greater than one
(ℜ0 = 3.85011 > 1), this means that on average, one infected
individual can infect more than one susceptible individual,
which specifically means that, on average, one individual can
infect about three susceptible individuals. This indicates that
the dengue transmission model is locally asymptotically stable
at the endemic equilibrium point E ∗ = (S∗,E∗, I∗,H∗,R∗),
thus allowing the disease to persist and spread within the
population over time without the implementation of effective
control strategies. According to equation (4), the endemic
equilibrium point was calculated as E ∗ = (S∗,E∗, I∗,H∗,R∗) =
(1552560,17893,7805,11749,80370).

Next, by substituting the parameter values from Table 2.
into equation (2), the dynamic model of dengue transmission
is obtained as follows:

dS
dt

= (70.40586)+(0.02778)R

− (0.002)S(I +H)

(I +H)+(0.00454)N
− (0.00004)S,

dE
dt

=
(0.002)S(I +H)

(I +H)+(0.00454)N
− (0.10388)E,

dI
dt

= (0.10388)E − (0.23814)I,

dH
dt

= (0.02113)E +(0.16667)I − (0.14289)H

dR
dt

= (0.07143)I +(0.14285)H − (0.02782)R,

(4)

Based on equation (4) and assuming the following ini-
tial condition values: S(0) = 1665506,E(0) = 3581, I(0) =
500,H(0) = 404,R(0) = 388, a numerical simulation of the
SEIHR-VW model for dengue transmission was conducted to
determine the dynamic behavior of each subpopulation over
time using the Maple 2019 software package. These initial
condition values were derived from dengue incidence data
reported in Semarang City, Indonesia, in 2023 (obtained from
the Semarang City Health Office).

Figure 2 shows that the number of susceptible individuals

Fig. 2: Numerical Simulation of The Dengue Transmission
Model for system (2): Subpopulation of Susceptible Human

was approximately 1665505 at t=0, but it decreased sharply
during the first 100 days, reflecting the rapid spread of
infection in the early phase of the disease. After this period, the
rate of decline slowed considerably, and the curve gradually
approached a steady state. From around day 200 onward, S(t)
stabilizes near S∗ = 1552560. This indicates that although a
large portion of the subpopulation remains susceptible, the
system reaches a dynamic balance in which the inflow of
individuals entering the susceptible subpopulation is balanced
with the outflow of those leaving the subpopulation.

Fig. 3: Numerical Simulation of The Dengue Transmission
Model for system (2): Subpopulation of Exposed Human

Figure 3 illustrates that, initially, at t=0, the exposed pop-
ulation consists of 3581 individuals. During the early phase,
there is a rapid increase in the number of exposed individuals,
reflecting the swift transmission of the disease within the
susceptible subpopulation. Around day 100, the growth rate
slows significantly as the number of exposed individuals
approaches the endemic equilibrium point of 17893, indicating
stabilization in disease spread. After this period, the curve
levels off, showing minor fluctuations around the equilibrium,
which suggests that the disease has reached a steady state in
which the number of people entering and leaving the exposed
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subpopulation is balanced.

Fig. 4: Numerical Simulation of The Dengue Transmission
Model for system (2): Subpopulation of Infected Human

Figure 4 shows a rapid increase in the number of infected
individuals, rising from 500 to nearly 7000 by day 50 due to
a high transmission rate and a large susceptible population.
Between days 50 and 100, the growth slows as new infections
decline and more individuals move to the hospitalized or
recovered subpopulations. After day 150, the curve flattens,
indicating the system approaches an endemic equilibrium, with
the number of infected individuals stabilizing at around 7805.

Fig. 5: Numerical Simulation of The Dengue Transmission
Model for system (2): Subpopulation of Hospitalized Human

Figure 5 shows that at the beginning, when there are 404
hospitalized individuals, the number increases rapidly as more
infections progress to severe symptoms. After approximately
day 50, the growth slows down, and the curve begins to flatten.
This indicates that the spread of the disease is stabilizing,
either because fewer people remain at risk or due to natural
limitations or interventions. Eventually, the curve flattens near
11749 hospitalized individuals, indicating that the system has
reached a steady state. At this point, the number of people
entering and leaving the hospital is close to equal. This

steady show that the disease persists within the population and
continues to place sustained pressure on healthcare systems.

Fig. 6: Numerical Simulation of The Dengue Transmission
Model for system (2): Subpopulation of Recovered Human

Figure 6 shows that initially, the number of recovered
individuals is very low at 388. In the early stage, R(t) in-
creases rapidly due to the rising number of individuals who
recover from infection. This growth continues rapidly until
around t=100 days, after which the curve gradually slows
as it approaches the endemic equilibrium point at 80370,
representing the long-term number of recovered individuals
in the population. From the graph, it can be observed that the
system reaches this equilibrium approximately at t=200, after
which R(t) stabilizes without significant further increase. This
indicates that recovery has saturated and the disease dynamics
have settled into a stable endemic state.

Fig. 7: The effect of variations in parameter ω on the infected
individuals

Furthermore, a simulation was carried out to examine the
effect of varying the parameter value ω on the number
of infected individuals (I) and hospitalized individuals (H),
as illustrated in Figures 7 and 8. In addition, a numerical
simulation was performed to observe the impact of changes
in the parameter ρ2 on the number of recovered individuals
(R), as shown in Figure 9. A more detailed explanation is
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provided in the following section. First, the simulation was
run for ω = 0.06667, 0.16667, and 0.25. The results in
Figure 7 show that as ω increases, the number of infected
individuals decreases. By the 14th day, the number of infected
individuals reaches 3818 for ω = 0.06667, decreases to 2589
for ω = 0.16667, and further drops to 2012 for ω = 0.25.

Fig. 8: The effect of variations in parameter ω on the hospi-
talized individuals

Second, Figure 8 presents the numerical simulation of
hospitalized individuals by varying the parameter value ω ,
while keeping other parameters constant. The simulation was
run for the same three values of ω . It can be observed that
as ω increases, the number of hospitalized individuals also
increases. By the 14th day, when ω = 0.06667, the number of
hospitalized individuals reaches 1864. For ω = 0.16667, the
number rises to 2684, and for ω = 0.25, it further increases
to 3047. Finally, Figure 9 shows the numerical simulation

Fig. 9: The effect of variations in parameter ρ2 on the
recovered individuals

of recovered individuals by varying the parameter value ρ2,
while keeping other parameters constant. The simulation was
conducted for three values of ρ2 = 0.143, 0.444, and 0.999. It
can be observed that as ρ2 increases, the number of recovered
individuals decreases. By the 14th day, when ρ2 = 0.143, the
number of recovered individuals reaches 2682. For ρ2 = 0.444,

the number decreases to 963, and for ρ2 = 0.999, it drops
further to 393.

E. Sensitivity Analysis

Sensitivity analysis was conducted to identify the parame-
ters that significantly influence the value of ℜ0 in the spread of
dengue disease. The first step is to determine the sensitivity
index of each parameter with respect to ℜ0. The sensitivity
index is obtained by finding the partial derivative of ℜ0 to the
parameter P.

Cℜ0
P =

∂ℜ0

∂P
× P

ℜ0

Next, substitute the parameter values of µh, µv, β , δ , q1, q2, ω ,
ρ1, ρ2 to their respective sensitivity index analysis equation, an
index of sensitivity values to ℜ0 is presented in the following
table:

TABLE III: Index of Parameter Sensitivity.

Par Sensitivity Index
µh −0.00063
µv −1
β 1
δ 0.00031
q1 0.03398
q2 −0.03366
ω −0.13962
ρ1 −0.25937
ρ2 −0.60068

The sensitivity analysis in Table III shows that the mosquito
mortality rate (µv) and the transmission rate (β ) are the most
influential parameters affecting the basic reproduction number
(ℜ0). A 10% increase in µv reduces ℜ0 by 10%, while a
10% increase in β raises ℜ0 by 10%. The recovery rates of
hospitalized individuals (ρ2) and non-hospitalized individuals
(ρ1) also have a strong negative influence, highlighting their
role in reducing transmission. The hospitalization rate (ω) has
a moderate effect, whereas the progression parameters (q1, q2)
have only a minor impact. In contrast, the human mortality rate
(µh) and the incubation parameter (δ ) exert minimal influence
on ℜ0.

IV. CONCLUSIONS

The host-vector SAEIHR-VW model was modified into
the SEIHR-VW model for dengue transmission by removing
the subpopulation of susceptible humans aware of dengue
infection (A) and excluding the parameters for case detection
and hospital capacity. The resulting model includes seven
subpopulations: susceptible humans, exposed humans, infected
humans, hospitalized humans, recovered humans, susceptible
mosquitoes, and infected mosquitoes. Both the disease-free
equilibrium point (DFE) and the endemic equilibrium point
(EE) were obtained in this study. Based on local stability
analysis using the basic reproduction number (ℜ0) and the
Routh–Hurwitz criterion, it was found that ℜ0 > 1, indicating
that the model is locally asymptotically stable at the endemic
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equilibrium point. Furthermore, numerical simulations showed
that ℜ0 = 3.85011> 1, confirming that dengue transmission in
the model remains locally asymptotically stable at the endemic
equilibrium point. Sensitivity analysis further revealed that the
mosquito mortality rate (µv) and the infection rate (β ) are the
most influential parameters.

For future research, this study can be extended by exploring
longer time horizons to capture long-term transmission dynam-
ics, integrating richer and more recent datasets to improve
parameter accuracy, and incorporating additional epidemio-
logical or environmental factors such as seasonal variation,
climate influence, healthcare interventions, as well as the
application of optimal control strategies. These extensions
would enable the model to better reflect real-world conditions
and provide stronger insights for dengue control strategies.
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