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Partition Dimension of Bridge Graphs Between
Complete and Star Graphs

Amrullah1, Laila Hayati2, and Junaidi 3

Abstract—This paper of investigates the determination of the
partition dimension for a bridge graph formed by connecting
a clique Kn and a star K1,m through a single edge. Although
the partition dimension has been extensively studied for various
families and graph operations, the mixed dense–sparse case on
B(Kn,K1,m) remains unsettled, since the result is sensitive to
the position of the bridge edge and the balance between the size
parameters n and m. We combine distance symmetry arguments,
leaf-based constraints at the star center, and explicit constructions
of distinguishing partitions to obtain tight values of the partition
dimension. The study begins with the basic cases K1 and K2,
and then proceeds to the general case with parameters n ≥ 2.

The main result shows that for the central bridge (e = v1x),
it holds that pd(B) = n− 1 if m < n, pd(B) = n if m = n, and
pd(B) = m if m > n; for the leaf bridge (e = v1u1), it holds
that pd(B) = n when m ≤ n, and pd(B) = m− 1 when m > n.
These results demonstrate that the location of the bridge edge,
together with the size parameters m and n of the components,
can sharpen the partition dimension value of the graph prior to
the bridging operation.

I. INTRODUCTION

THE partition dimension refines the metric dimension. It
asks for the smallest number of vertex classes whose dis-

tance profiles single out every vertex. The parameter measures
how well a graph distinguishes its vertices and links directly
to tasks in networks, navigation, and coding [8], [7].

Many papers have studied this topic on specific families. Ex-
amples include homogeneous firecrackers, cycle-book graphs,
and several classes of trees [2], [21], [13], [6]. The parameter
has also been analyzed under common graph operations such
as corona products [1], [23], [12], subdivisions [3], Cartesian
and strong products [14], and series–parallel constructions
[18]. Related lines show how structure constrains distinguisha-
bility: bounds for wheel-like families [16], constant values
in Toeplitz-type graphs [17], metric and connected-metric
behavior in other families [20], [19], and labeling or thickness
effects tied to distance and density [11], [9].

This paper focuses on a very small but informative change:
adding a single bridge edge between two components. We
join a complete graph Kn and a star K1,m with one edge
uv where u ∈ V (Kn) and u ∈ V (K1,m), called a bridge
graph B(Kn,K1,m, uv) [5], [22]. The construction mixes two
extremes of connectivity: a dense clique and a leaf-heavy star.
A bridge to the star center creates a cut-structure; a bridge to a
leaf relaxes leaf constraints. Earlier studies in related settings
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gave upper bounds or partial cases [4], [5]. In the paper
[5], only general upper and lower bounds for bridge graphs
were identified. In contrast, the present study determines the
exact partition dimension for bridge graphs constructed from a
complete graph Kn and a star graph K1,m, a specific case that
was not addressed in the previous work. A uniform and exact
description across sizes and across both bridge placements was
not yet available.

We fill this gap. We give sharp formulas for the partition
dimension of B(Kn,K1,m). The value depends only on the
balance between n and m and on whether the bridge hits
the center or a leaf. Our method is constructive: distance-
symmetry arguments yield lower bounds, and explicit parti-
tions meet those bounds. A simple rule then emerges: the
more restrictive side (the clique or the star leaves) controls
the parameter, with at most a one-unit shift set by the bridge
endpoint. These results extend and unify prior work on graph
operations and bridge structures [1], [3], [5], [4], [14], [18],
[23], [16].

II. PRELIMINARIES

All graphs in this paper are finite, simple, and con-
nected. Let G = (V,E). A partition of V is a family
Π = {T1, . . . , Tk} of nonempty, pairwise disjoint sets with⋃k

i=1 Ti = V . For u ∈ V and X ⊆ V , write d(u,X) =
min{d(u, x) : x ∈ X} and define the representation vector

r(u | Π) =
(
d(u, T1), . . . , d(u, Tk)

)
.

The partition Π is distinguishing if r(u | Π) ̸= r(v | Π) for
all distinct u, v ∈ V . The partition dimension is

pd(G) = min{ |Π| : Π is distinguishing } (see, e.g., [1], [20]).

Note a basic property: if u ∈ Tj then the j-th entry of r(u | Π)
equals 0, while the other entries are ≥ 1; for a clique Kn they
are exactly 1.

Notation. We write Kn for the complete graph on v1, . . . , vn,
and K1,m for the star with center x and leaves u1, . . . , um. A
bridge graph joining Kn and K1,m is obtained by adding a
single edge e between a vertex of Kn and a vertex of K1,m:

B(Kn,K1,m; e), e ∈ {v1x, v1u1}.

We call e = v1x the center bridge and e = v1u1 the leaf
bridge. These conventions fix the distance calculations and
partitions used later.

Three basic facts. We will use the following standard tools
without reproving them.
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Lemma II.1 ([14]). Let G be connected and Π distinguishing.
If d(x,w) = d(y, w) for all w ∈ V (G) \ {x, y}, then x and y
lie in different classes of Π.

Lemma II.2 ([3]). If a vertex of G is adjacent to k leaves,
then pd(G) ≥ k.

Lemma II.3 ([17]). For a connected graph G, we have
pd(G) = 2 if and only if G is a path Pn.

See also [15] for related examples that guide our construc-
tions.

Immediate lower bounds. Let G = B(Kn,K1,m; e) with the
bridge incident to v1 ∈ V (Kn). Then v2, . . . , vn have the same
distances to all remaining vertices, so by Lemma II.1 they must
occupy distinct classes of any distinguishing partition:

pd(G) ≥ n− 1. (1)

If the bridge meets the star center x, Lemma II.2 forces all m
leaves to be separated, hence

pd(G) ≥ m. (2)

Both estimates will become tight in the main results.

Proof roadmap. To match these bounds, we explicitly build
small distinguishing partitions and check uniqueness of repre-
sentation vectors in the three natural configurations for a pair
(w, z): (i) both in Kn; (ii) both in K1,m; (iii) one in each part
(cf. [16]). When the bridge hits the center, we isolate the center
(or one designated leaf) and split Kn accordingly, when it hits
a leaf, we separate that leaf and adjust the classes inside Kn.
The smallest valid construction gives an upper bound which,
together with (1)–(2), yields the exact formulas one claimed
later.

III. RESULTS AND DISCUSSION

In this section we record exact values of the partition di-
mension for bridge graphs obtained from Kn and a star K1,m.
Throughout, V (Kn) = {v1, v2, · · · , vn} with E(Kn) =
{vivj |1 ≤ i ̸= j ≤ n}), and V (K1,m) = {x, u1, . . . , um}
where x is the center and u1, . . . , um are leaves.

A. Base cases for K1 and K2 joined to a star

We record four immediate propositions that anchor the small
instances and guide the general proofs. These compact cases
will serve as templates in what follows.

Proposition 1 (K1 joined to K1,1). For B = B(K1,K1,1; e)
one has B ∼= P3, hence pd(B) = pd(P3) = 2.

Proposition 2 (K1 joined to K1,m, m ≥ 2: ). If
B = B(K1,K1,m; v1x), then B ∼= K1,m+1 and therefore
pd
(
B(K1,K1,m; v1x)

)
= pd(K1,m+1) = m+ 1[10].

Proposition 3 (K1 joined to K1,2: bridge at a leaf). If B =
B(K1,K1,2; v1u1), then B ∼= P4, hence pd(B) = pd(P4) =
2.

Proposition 4 (K1 joined to K1,3: bridge at a leaf). If B =
B(K1,K1,3; v1u1), then pd(B) = 3. One distinguishing par-
tition is T1 = {u1, x}, T2 = {u2}, T3 = {u3, v1}.

We now settle the remaining leaf bridge cases for K1 joined
to a star with m ≥ 4. The m − 1 leaves adjacent to the
center force at least m−1 classes, and a matching construction
achieves this bound.

Lemma III.1 (K1 joined to K1,m, m ≥ 4: bridge at a leaf).
Let B = B(K1,K1,m; v1u1) with m ≥ 4. Then pd(B) =
m− 1.

Proof. Since x is adjacent to m − 1 leaves u2, . . . , um,
Lemma II.2 gives pd(B) ≥ m − 1. For the upper bound,
consider

T1 = {u1, x, u2},
T2 = {v1, u3},
Ti = {u i+1} (3 ≤ i ≤ m− 1).

We check only pairs that lie in a common block.
Inside T1. The pairs (u1, x) and (u2, x) are separated by

T3 = {u4}, since d(x, u4) = 1 while d(u1, u4) = d(u2, u4) =
2. The pair (u1, u2) is separated by T2: d(u1, T2) = 1 and
d(u2, T2) = 2.

Inside T2 = {v1, u3}. Use T1: d(v1, T1) = 1 (via u1) while
d(u3, T1) = 1 via x; to separate them pick any singleton Ti =
{ui+1} with i ≥ 3 (exists since m ≥ 4): then d(v1, ui+1) = 3
and d(u3, ui+1) = 2.

All remaining Ti are singletons. Thus Π = {T1, . . . , Tm−1}
is distinguishing, so pd(B) ≤ m− 1. Together with the lower
bound, pd(B) = m− 1.

We next record five elementary properties for K2 joined to
a star. Taken together they pin down all small regimes and
illustrate the center–vs.–leaf effect: a center bridge behaves
like adding one leaf to the star (eventually forcing pd = m
when m ≥ 3), while a leaf bridge keeps the value small at
m = 2 (paths P5) and stabilizes at pd = 3 for m = 3 with
an explicit partition. These cases serve as templates for the
general arguments. In Propositions 5 through 9, the proofs are
straightforward, relying on the known facts that pd(Pn) = 2
[10] and Proposition 2, which uses pd(K1,n) = n [10].

Proposition 5 (K2 joined to K1,1).
For B = B(K2,K1,1; e) one has B ∼= P4, hence pd(B) =
pd(P4) = 2.

Proposition 6 (K2 joined to K1,2: bridge at a leaf). If B =
B(K2,K1,2; v1u1), then B ∼= P5, hence pd(B) = pd(P5) =
2.

Proposition 7 (K2 joined to K1,2: bridge at the center). If
B = B(K2,K1,2; v1x), then B ∼= B(K1,K1,3; v1u1) and
pd
(
B(K2,K1,2; v1x)

)
= pd

(
B(K1,K1,3; v1u1)

)
= 3.

Proposition 8 (K2 joined to K1,m:bridge at the center).
If B = B(K2,K1,m; v1x) with m ≥ 3, then B ∼=
B(K1,K1,m+1; v1u1). By Lemma III.1 (applied to m+1 ≥ 4)
we obtain pd(B) = m.

Proposition 9 (K2 joined to K1,3: bridge at a leaf). If
B = B(K2,K1,3; v1u1), then pd(B) = 3. One distinguishing
partition is T1 = {x, u1, u2}, T2 = {u3}, T3 =
{v1, v2}.
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The following lemma completes the leaf bridge side for K2

when the star has at least four leaves: the m−1 leaves adjacent
to the center impose a matching lower bound, and an explicit
partition achieves it.

Lemma III.2 (K2 joined to K1,m, m ≥ 4: bridge at a leaf).
Let B = B(K2,K1,m; v1u1) with m ≥ 4. Then pd(B) =
m− 1.

Proof. Since x is adjacent to m − 1 leaves u2, . . . , um,
Lemma II.2 gives pd(B) ≥ m− 1. For the upper bound, set

T1 = {u1, u2, x},
T2 = {v1, v2, u3},
Ti = {u i+1} (3 ≤ i ≤ m− 1).

Again we check pairs within blocks.
Inside T1. The pairs (u1, x) and (u2, x) are separated by

T3 = {u4}: d(x, u4) = 1 while d(u1, u4) = d(u2, u4) =
2. The pair (u1, u2) is separated by T2: d(u1, T2) = 1 and
d(u2, T2) = 2.

Inside T2 = {v1, v2, u3}. Use T1 to separate (v1, v2) and
(v2, u3):

d(v1, T1) = 1, d(v2, T1) = 2, d(u3, T1) = 1.

For (v1, u3), take any singleton Ti = {ui+1} with i ≥ 3 (exists
since m ≥ 4): then d(v1, ui+1) = 3 and d(u3, ui+1) = 2.

All remaining Ti are singletons. Hence Π =
{T1, . . . , Tm−1} is distinguishing and pd(B) ≤ m − 1.
Together with the lower bound, pd(B) = m− 1.

B. The bridge graph from Kn, n ≥ 3 joined to K1,m,m ≥ 3

This subsection assembles the general picture for bridge
graphs built from a clique Kn and a star K1,m when both
parameters are at least 3. Two forces drive the outcome: the
clique side enforces strong proximity among its vertices, while
the star side forces many classes via its leaves. The position
of the bridge at the star center or at a leaf modulates these
forces by at most one. We first give a uniform upper bound
(valid whenever m ≤ n), then state three theorems that supply
the exact values in the regimes m ≤ n, m > n with a leaf
bridge, and m > n with a center bridge.

The complete graph Kn and the star K1,m sit at opposite
ends of connectivity. Gluing them with a single edge produces
a mixed object: high density on the Kn side and degree–1
leaves on the star side. Our goal is to pin down the partition
dimension by displaying small resolving partitions (upper
bounds) and by invoking simple symmetry/leaf constraints
(lower bounds).

When the star does not exceed the clique (m ≤ n), one can
always construct a resolving partition with exactly n classes,
independently of whether the bridge meets the center or a leaf.
This upper bound underpins the first exact result below.

Lemma III.3 (Upper bound for bridges with a small star). Let
K1,m be a star, Kn be a complete graph and B(Kn,K1,m; e)
be the bridge graph where e ∈ {v1x, v1u1}. If m ≤ n,
then B(Kn,K1,m; e) admits a distinguishing partition with
n classes. In particular, pd

(
B(Kn,K1,m; e)

)
≤ n.

Proof. We build a partition with n classes and inspect only
unordered pairs that lie in the same class (pairs in different
classes are already distinguished by the 0-entry in their own
class).

Case m = n. Define Π = {T1, . . . , Tn} by

T1 = {v1, u1, vn},
Ti = {vi, ui} (2 ≤ i ≤ n− 1),

Tn = {x, un}.

Fig. 1. (a) The bridge graph B(Kn,K1,m; v1u1); (b) a distinguishing
partition for the center bridge e = v1x; (c) a distinguishing partition for
the leaf bridge e = v1u1.

For visual guidance, Fig. 1(a) shows B(Kn,K1,m; v1u1),
Fig. 1(b) a partition for the center bridge e = v1x, and Fig. 1(c)
a partition for the leaf bridge e = v1u1.

Pairs inside T1. The block Tn separates (v1, vn) and
(u1, vn), since

d(v1, Tn) =

{
1, e = v1x,

2, e = v1u1,

d(vn, Tn) =

{
2, e = v1x,

3, e = v1u1,

d(u1, Tn) = 1.

For the pair (v1, u1): use Tn when e = v1u1 (here d(v1, Tn) =
2 > d(u1, Tn) = 1); use T2 when e = v1x (here d(v1, T2) =
1 < d(u1, T2) = 2).

Pairs inside Ti = {vi, ui}, 2 ≤ i ≤ n − 1. Use T1:
d(vi, T1) = 1 and d(ui, T1) = 2.

Pair inside Tn = {x, un}. Use T1: d(x, T1) = 1 and
d(un, T1) = 2.

Hence Π is distinguishing and pd(G) ≤ n.

Case m < n. Define Π = {T1, . . . , Tn} by

Ti = {vi, ui} (1 ≤ i ≤ m− 1),

Tm = {x, um, vm},
Tj = {vj} (m+ 1 ≤ j ≤ n).

For visual guidance, Fig. 2(a) illustrates the distinguishing
partition when the bridge is e = v1x (center bridge), and
Fig. 2(b) shows the partition when the bridge is e = v1u1

(leaf bridge).
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Fig. 2. The distinguishing partition for (a) the center bridge e = v1x and
(b) the leaf bridge e = v1u1.

Pairs inside Ti = {vi, ui}, 1 ≤ i ≤ m−1. Use Tn = {vn};
since Kn is a clique,

d(vi, Tn) = 1, d(ui, Tn) =

{
2, e = v1x,

3, e = v1u1.

Thus (vi, ui) is separated in either placement.
Pairs inside Tm = {x, um, vm}. Use T1 = {v1, u1}:

d(x, T1) = 1, d(um, T1) = 2, d(vm, T1) = 1,

which separates (x, um) and (um, vm). The pair (x, vm) is
separated by Tn = {vn} since d(vm, Tn) = 1 and d(x, Tn) =
2.

Singletons Tj = {vj}, m+1 ≤ j ≤ n. No check is required.
Therefore every pair in a common class is distinguished,

the partition Π is resolving, and pd(G) ≤ n.

For m ≤ n, equal distance symmetry on the clique side
forces n distinct classes among the vertices of Kn (aside
from the bridge endpoint), yielding a matching lower bound.
Together with Lemma III.3, this gives the exact value pd = n
for both bridge placements.

Theorem III.4. Let B = B(Kn,K1,m; e) be the bridge
graphs, Kn be a complete graph, and K1,m be a star graph,
where e ∈ {v1x, v1u1}. if m ≤ n, then pd(B) = n.

Proof. By Lemma III.3 show the upper bound of graph B.
In Lemma III.3 the graph B admits a distinguishing partition
with n classes, hence pd(B) ≤ n.

Then, we show the Lower bound of graph B. By the equal
distance lemma (Lemma II.1), the vertices v2, . . . , vn must
lie in pairwise distinct classes of any distinguishing partition
(they have identical distances to all vertices outside {vi, vj},
for any distinct i, j ≥ 2). Thus every distinguishing partition
has at least n− 1 classes.

If |Π| = n − 1, then each class contains exactly one of
v2, . . . , vn, so v1 must share a class with some vj (2 ≤ j ≤ n).
Every other class contains a clique vertex vk, and since Kn

is complete graph we have d(v1, T ) = 1 = d(vj , T ) for each
such class T , while in their own class both distances are 0.
Hence r(v1 | Π) = r(vj | Π), a contradiction. Therefore no
(n−1)-class distinguishing partition exists, so pd(B) ≥ n.

Combining the bounds yields pd(B) = n.

When the star is larger (m > n) and the bridge meets a
leaf, the center remains adjacent to the other m − 1 leaves,
enforcing at least m−1 distinct classes. A direct construction
achieves this bound, so the exact value is m− 1.

Theorem III.5 (Leaf bridge, m > n). Let Kn be a complete
graph, K1,m be a star graph, and G = B(Kn,K1,m; e) be the
bridge graph with the bridge edge e = v1u1 (i.e., the bridge
meets a leaf of the star). If m > n, then pd(G) = m− 1.

Proof. Lower bound. The center x of K1,m is adjacent to
exactly m− 1 leaves u2, . . . , um. By Lemma II.2, any distin-
guishing partition must place these leaves in pairwise distinct
classes; hence pd(G) ≥ m− 1.

Upper bound. Define a partition Π = {T1, . . . , Tm−1} of
V (G) by

T1 = {v1, vn, u2},
Ti = {u i+1, v i} (2 ≤ i ≤ n− 1),

Ti = {u i+1} (n ≤ i ≤ m− 2),

Tm−1 = {u1, um, x}.

We verify that every unordered pair of vertices that lies in the
same block is separated by at least one other block.

Block T1 = {v1, vn, u2}. The block Tm−1 separates (v1, vn)
and (vn, u2) since

d(vn, Tm−1) = 2, d(v1, Tm−1) = 1, d(u2, Tm−1) = 1.

The pair (v1, u2) is separated by T2 = {u3, v2} because

d(v1, T2) = 1, d(u2, T2) = 2.

Blocks Ti = {u i+1, vi} for 2 ≤ i ≤ n− 1. Use Tm−1:

d(u i+1, Tm−1) = 1 (via x), d(vi, Tm−1) = 2 (via u1).

Blocks Ti = {u i+1} for n ≤ i ≤ m − 2. Singletons; no
check needed.

Block Tm−1 = {u1, um, x}. The block T1 separates
(u1, um) and (x, um), since

d(u1, T1) = 1, d(x, T1) = 1, d(um, T1) = 2.

The pair (u1, x) is separated by T2:

d(x, T2) = 1, d(u1, T2) = 2.

All within-block pairs are thus distinguished, so Π is
a distinguishing partition with |Π| = m − 1. Therefore
pd(G) ≤ m−1. Combined with the lower bound, we conclude
pd(G) = m− 1.

If m > n and the bridge meets the center, all m leaves sit
one step from the center, which forces at least m classes. An
explicit m-class partition witnesses the upper bound, giving
the exact value m.

Theorem III.6 (Exact values: m > n). Let G =
B(Kn,K1,m; e) be the bridge graph obtained by joining Kn

to K1,m with the bridge e = v1x (center bridge). If m > n
and n ≥ 3, then pd(G) = m.

Proof. Lower bound. The center x is adjacent to all m leaves
u1, . . . , um; hence, by Lemma II.2, pd(G) ≥ m.
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Upper bound. Define a partition Π = {T1, . . . , Tm} by

T1 = {v1, v2, u1},
Ti = {ui, v i+1} (2 ≤ i ≤ n− 1),

Ti = {ui} (n ≤ i ≤ m− 1),

Tm = {um, x}.

We only need to check unordered pairs that lie in the same
block.

Inside T1 = {v1, v2, u1}. Use Tm to separate (v1, v2) and
(v2, u1):

d(v1, Tm) = 1, d(v2, Tm) = 2, d(u1, Tm) = 1.

For (v1, u1), use T2 = {u2, v3}:

d(v1, T2) = 1, d(u1, T2) = 2.

Inside Ti = {ui, v i+1} for 2 ≤ i ≤ n− 1. Use Tm:

d(ui, Tm) = 1, d(v i+1, Tm) = 2.

Inside Ti = {ui} for n ≤ i ≤ m− 1. Singletons; no check
needed.

Inside Tm = {um, x}. Use T1:

d(x, T1) = 1, d(um, T1) = 2.

Thus every within-block pair is distinguished by some block
of Π, so Π is a resolving partition with |Π| = m, and
hence pd(G) ≤ m. Together with the lower bound we obtain
pd(G) = m.

IV. CONCLUSION

We have shown that the partition dimension of a bridge
graph obtained by joining a clique Kn and a star K1,m is
tightly governed by the structure of the bridge (center vs. leaf)
and by the sizes of the components. In particular, when the star
does not exceed the clique (m ≤ n), a uniform construction
yields pd(B) = n, confirming that the dense side dictates the
parameter. For m > n, we have pd(B) = m − 1 when the
bridge meets a leaf of the star (e = v1u1), and pd(B) = m
when it meets the center (e = v1x).

V. OPEN PROBLEMS.

How does the partition dimension of the graph change if the
bridge edge is replaced by a path of length t ≥ 2 (a subdivided
bridge), or if several pairwise disjoint bridges are added.
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