INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 2, DECEMBER 2025 87

Metaheuristic Search in Mixed Kernel and Spline
Truncated Non-parametric Regression

Mustika Hadijati', Irwansyah?, Nurul Fitriyani!®, Muhammad Sopian Sauri*

Abstract—Non-parametric regressions are widely used in data
analysis because of their flexibility. Apart from their applicability,
it is not easy to find the optimal parameters of the corresponding
non-parametric models. This situation is caused by the non-
existence of a closed formula of the optimal parameters. In
this paper, we propose a metaheuristic approach for optimal
parameter search in mixed kernel and truncated spline and
kernel regression. Moreover, we provide examples on how to
implement the proposed algorithm to both real and simulated
datasets. The results indicate that the algorithm yields highly
accurate predictions for mixed truncated spline and kernel
regression models.

[. INTRODUCTION

ON-PARAMETRIC regression has been widely used

in data analysis because of its flexibility. The non-
parametric regression has been widely applied in several real
world data analysis, such as the prediction of the water
discharge volume in the watersheds in Lombok Island [8], the
modeling of the sustainable development goals achievement
in East Java [5], the modeling of the population growth rate
in West Nusa Tenggara Province [7], and the modeling of the
human development index data in East Java [1].

In the non-parametric regression, the regression curve is
assumed to be smooth, i.e. continuous and differentiable [6],
[3]. The two most commonly used nonparametric regression
models are the spline and kernel nonparametric regression
models. Each of those aforementioned model has its own char-
acteristics corresponding to the relation between its indepen-
dent and dependent variables. A multivariate non-parametric
model generally uses only one approach, such as either
truncated splines or kernels. This approach assumed that the
relations between each independent variable and the dependent
variable are the same for all independent variables. Although,
in reality each independent variable can have a different
relation pattern to the dependent variable. Several studies have
been conducted to provide alternative approaches to obtain
better model and predictions. One of those alternatives is
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by combining more than one non-parametric models for the
prediction. Several studies showed that by combining several
methods, such as spline and kernel [3], [[15], [[LO], [[LL], spline,
kernel, and Fourier series [1], kernel and Fourier series [2]],
[13], and so on, give better outcome. These combinations of
non-parametric models usually called a mixed non-parametric
model. Studies related to mixed nonparametric regression have
been done on the combination of spline and kernel estimators
and their properties, including models with bi-response [3],
multi-response [14], and multivariate variables [[15].

In the non-parametric models, the model parameters de-
termine the accuracy of the models. For this reason, it is
necessary to determine the optimum values of the parameters
to get an accurate non-parametric model. One criterion that can
be used to achieve this goal is by minimizing the generalized
cross-validation (GCV) value [6]], [9]]. In most cases, selecting
the optimal values of the parameters are computationally
expensive. This situation is caused by the non-existence of
a closed formula for the optimal parameters and the number
of parameters in a model can be very large. In the previous
studies, the optimal parameters was found using brute force
search [18], [4]. This approach is impossible to use for a model
with large number of parameters.

An optimization algorithm, such as metaheuristic search,
can be used to overcome this problem and also to make
the estimation process more efficient. The studies related to
the usage of optimization algorithms in choosing optimal
parameters is still not widely explored. Therefore, in this
paper, we propose an implementation of metaheuristic search
to determine the optimal parameters of mixed kernel and spline
truncated regression.

II. MAIN RESULTS

A. Parameter Search Formulation

Given the data (t,z,y) =
(tih .. 7tika Zily -y Zims yi)i:1)2’,,,7n ) where (ta Z) is
the predictor (independent) variables and y is the response
(dependent) variable. The relationship between (t,z) and y
is assumed to follow a nonparametric regression model as
follows:

Yi = (tits oo tiks Zits - o5 Zim) + € (D
for all ¢ = 1,...,n. The regression curve
w(Ei1y oy tiky Zily -« -y Zim) 1S assumed to be unknown

and smooth. The random error &; is assumed to be
independent and is normally distributed with E(e;) = 0 and

E(e2) = o2. In this paper, we assume that the regression
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model is an additive mix between truncated spline and kernel
non-parametric regression as follows:

k

stiks Zils - s Zim) = E Jr

r=1

1% (tih cee (ti'm ~a d) +Z Bﬁs (le)
s=1

. 2
where d is the common degree of spline polynomials, & are
the knot points for the truncated parts of spline polynomials
and 8 = (Bs)7-, are the bandwidths for kernel regression.

In the case of spline-based methods, the resulting patterns
typically exhibit piecewise polynomial structures with smooth
transitions at the knot points. In contrast, kernel-based methods
tend to generate more irregular, locally driven patterns that
do not display a clearly defined global structure. Based on
these facts, in order to determine whether an independent
variable/predictor x is included as t or z in the mixed model
use the following steps:

(1) Create a scatter plot between x and the corresponding
response variable
(2) Use the following rules:

(2.1.) If the scatter plot in step (1) exhibit a piece-wise
polynomial pattern, then x will be included as t.

(2.2.) If the scatter plot in step (1) does not exhibit any
particular pattern, then x will be included as z.

For a more detailed description of the aforementioned mixed
model, see [15]].

Let f(t,z,y,J,d,B) be a measure function for the re-
gression model in 2] Some frequently used measure func-
tions include mean squared error (MSE), cross-validation
(CV), and generalized cross-validation (GCV). The function
f(t,2,y,d, &, 3) measures how close the prediction by the re-
gression model induced by the smoothing parameters (d, &, 3)
to the original data. Therefore, we can formulate a search for
the optimal parameters as follows.

Solve

Argmin( B)f(taZ7Yad?d7B) (3)

Uy
v

1S3

using the Algorithm [I]

Algorithm 1 Find (d, &, 8) to minimize f(t,z,y,d, &, 3)

Input:
t = independent variables for spline
polynomial
z = independent variables for kernel regression
y = dependent variables
n_pop = number of randomly generated initial
solutions
mazr_measure = fixed upper bound for f
max_iter = number of iterations/process

Initialize:

pop = (di, &, B;) =5+ rand(n_pop) >
randomly generated initial solutions
iteration < 0

while iteration < max_iter or f > maxr_measure do
pop_select < selection(pop, f) > selection of
solutions based on their f value
pop_new <— update_pop(pop_select)
solutions from the selected solutions
pop < pop_select | pop_new
iteration < iteration + 1
end while

> produce new

Here is a description of the parameters and functions in
Algorithm [T]

e The parameter n_pop depends on the search method
used. For example, if we use simulated annealing, then
n_pop = 1. If the search algorithms are Particle Swarm
Optimization (PSO) and Genetics Algorithm (GA), then
n_pop > 1.

e There are no close formulas for the values of
max_measure and maz_iter. One way to estimate the
values is by observation in computational experiments.

e The function rand (n_pop) consists of several func-
tions, where each function generates d or & or f3 ran-
domly. So,

rand(n_pop) = randj(n_pop, d_l,d_u)
o randg(n_pop, a_l, @_u)
o randgz(n_pop, B_L, B_u)

and o
(d,a,p) = (randdﬂranddﬂrandé) ,

with 7; and 7, are lower bound and upper bound for
the corresponding variable, respectively, where 7 €
{d’ d’ ﬁ }
o There are numerous ways to execute the function
selection (pop, £). Here are two popular choices:
a. selection based on the best f value
b. selection based on the probability, where the proba-
bility value is determined by the f value
e The function update_pop (pop_select)
has at least one of the following two functions:

usually

a. the function combine: to combine selected solu-
tions to produce new solutions
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b. the function rand_mut: to do a random mutation
on some of the new solutions

Notice that the function rand_mut consists of several
functions, where each function performs a random muta-
tion on d or & or 3. So,

rand_mut(pop_select) = rand_mut j(n_pop,p;)
o rand_mutg(n_pop, pa)

o rand_mut (n_pop, Dj )

where p. is the mutation probability for the parameter
v € {d.a bl

B. Examples

In this part, we give examples on how to apply Algo-
rithm [T to find optimal parameters of mixed truncated spline
and kernel regression. We use two well-known metaheuristic
search, genetics algorithm (GA) and particle swarm optimiza-
tion (PSO), for the regression’s optimal parameters search.
In this case, there are two kinds of parameters to search, (1)
bandwidths for kernel regression, and (2) knot points for spline
truncated regression with fixed polynomial degree and number
of knot points. The R codes, datasets, and outputs related
to these examples are available at https://github.com/iwplus/
nonpar-metaheuristic,

One way to measure the optimality of parameters in a mixed
non-parametric model is by using generalized cross-validation
(GCYV). The related GCV function for the model |Z|is as follows
[13]:

n (1 - 2(d,6,8)) g1

(e (i)

with M(d,a, ) = K(d,&) + D(B), where K(d,a) is the
matrix related to spline truncated approximation with multi-
degree d and knot points &, and D(}3) is the matrix related
to kernel approximation with bandwidths 3. For more details
about these matrices, see [13]]. In all of our examples, we will
use

aov (cz, a, B) - @)

f(d, &, B) S)

1) Datasets descriptions: In order to showcase the perfor-
mance of our proposed algorithm, we use the following four
datasets.

=GOV (d,a,p).

(a) The 2016 percentage data of malnourished children under
five years of age in West Nusa Tenggara. We denote this
dataset as A/ data.

(b) A synthetic data with 200 entries, denoted by M1/ data,
generated by the following rules:

X1 ~Uniform(0,1), Xo~Uniform(—1,1),

€ ~ Normal(0,0.12),

Y =sin (£1) 4+ 0.8¢7%% 4 0.3 cos (0X2) 4 e

89

(c) A synthetic data with 200 entries, denoted by M2 data,
generated by the following rules:

X1 ~Uniform(0,1), X~ Uniform(—1,1),

€ ~ Normal(0,0.12),

Y—sm( ) —|—6

W

(d) A synthetic data with 200 entries, denoted by M3 data,
generated by the following rules:

X1, X3 ~Uniform(0,1), Xs~ Uniform(—1,1),

€ ~ Normal(0,0.12),

Y—sm( )

\ﬁ +03X3+€

Figures [T}4] show the relation patterns between independent
variables and the response variable for each data.

Patterns for A1 Data
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Fig. 1. Scatter plots between each predictor variable to the response variable
for Al data

Patterns for M1 Data

X1vsY XavsY
2.75 4 L4 ® . 2.75 1 H L4
° il ' 4
2501 o g %o 2501 O ®
[ J
2.2514° ¢ ¢ o .{o e| 2251 ; 5
< '.o. ° g ° ‘:.
[ ]
2001 ¢ g0 s %, ..'.. o .‘ 2.00 :"&. v
f .Ji , (N ... ° LN ) 9,
1.75 4 Te o2 'q‘ 1151 S¥p o 7 &
[ 0.0 opefe o0 ®
150 o ®0 %% R ] 1.50 o0 e
LA Y \w °
a%yg S e R
125-'5\.0.. A 1.25 1 .w
[ ® L [
1.00 1 1.00
[ ] [ ]

g
o

o
N

&
IS

o |
o
o |
©

Fig. 2. Scatter plots between each predictor variable to the response variable

for M1 data
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Patterns for M2 Data
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Fig. 3. Scatter plots between each predictor variable to the response variable
for M2 data

Patterns for M3 Data
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Fig. 4. Scatter plots between each predictor variable to the response variable
for M3 data

The patterns summarized on Table [I}

Based on, for example, Figure[I] variables X1, X, X3, X4,
and X5 appear to follow the characteristics typically associated
with the kernel approach, whereas X4, X7, Xg, and Xg exhibit
features more consistent with the spline approach. The same
classification procedure is applied to datasets M1, M2, and
Ms.

TABLE I
PATTERNS SUMMARY FOR THE DATASETS Al, M1, M2, AND M3

Dataset Kernel Pattern Spline Pattern
Al X1, X2, X3, X4, X5 X6, X7, X3, X9
Ml X1 X

M2 X X1

M3 Xo X1,X3

2) Parameters search using genetics algorithm (GA): In
order to perform GA search for the optimal parameters, set
the following fitness function

fitness(d, &, 3) = —=———=—— (6)

where f ((i,d,,@’) is the GCV function as in equation
For simplicity, in this example the multi-degree d and the
number of knot points are fixed. Also, each solution candidate

represented as a vector p; =

&Z—,Bi and the solutions

population is the set of all p;. The search objective is to find
p; which maximize fitness function (thus minimize f). In
order to complete the GA search, use the following steps:

(a) Population initialization: Generate p; =

GirBi) i =

1,2,...,np0p, at random, such that

Ik < & < ug,lp < Bi < up,

where ny,,;, is the number of solutions in the population,
l;, and wuy, are the vector of lower and upper bounds of
bandwidths, respectively, and [, and wuy are the vectors
of minimum and maximum values of corresponding in-
dependent variables, respectively.

(b)

Selection: The selection process follows rank selection

algorithm. The rank selection consists of the following
steps:

(b.1.)

(b.2.)

(b.3.)

(b.4.)

(b.5.)

Sort the solutions based on their fitness values from
smallest to largest
Assign the probability values, prob;, to the solution
p; using the following formula

pos;
Tpop (Tpop +1)/2’
where pos; is the position of p; after the sorting
process.
Calculate the cumulative probability, c;, using the
following formula

-

Generate a random number r where r € [0,1]
and find j such that ¢; is the smallest cumulative
probability values which satisfies ¢; > r. Then, take
p; as a selected solution.

Repeat step (b.4.) until some number of solutions
selected

prob; =

ifi=1
otherwise.

prob;,
prob; + ¢;_1,

(c) Crossover: Let &; = (Q1, ..., Qi nyngno.) and B =

(@1:---

,51’n/3) 5 where Ny Mknots; and ng are the num-

ber of independent variables related to spline truncated
approximation, number of knot points, and the number
of independent variables related to kernel approximation,
respectively. The crossover between selected solutions pg
and p; proceeds according to the following steps:

(c.1.)

(c.2.)

(d) Mutation:

Generate random integers ind, and indg, where
indy € [1,n4] and indg € [1,ngl.
Derive new solutions using the following formulas

Ol = (aslv e 7O[S,inda—17 O‘t,inda; ey at,na7
/6817 s 7/68,1'71(15—17 Bt,indga s 7Bt,n5)

02 - (Olt17 e 7O‘t,inda—1a O‘s,indaa ey Ofs,naa
/Bt].) R 6t,indg—1; 6S,indga s 75871’7,[3) .

The mutation process on the new solution O;

is as follows:
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(d.1.) Generate random integers ind, and indg, where
indy € [1,naNknots] and indg € [1,ngl.

Replace «; ;nq, with a random number from the
interval [["%* ui"@*] where I} and wuj are the i-th
entries of the vectors [, and uy, respectively.
Replace f3jind, with a random number from the
interval [I;"% "] where [} and u} are the i-th
entries of the vectors ;, and uj,, respectively.

(d.2.)

(d.3.)

(e) Repeat steps (b)-(d) until the maximum iteration reached
or the max_measure value criterion achieved

For more details on GA, see [17]. Figures 5g] illustrate the
prediction results based on mixed kernel and spline truncated
regression with GA search for all datasets.

Al dataset prediction with GA

—— Data
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3.51
3.0
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2.0 1

1.5 1

Fig. 5. The Al dataset prediction with GA search

M1 dataset prediction with GA
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Fig. 6. The M1 dataset prediction with GA search

M2 dataset prediction with GA
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Fig. 7. The M2 dataset prediction with GA search
M3 dataset prediction with GA
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Fig. 8. The M3 dataset prediction with GA search

Table [l shows the summary of the performances of GA
search for optimal parameters search. The performances are
measured by GCV, mean squared error (MSE), and mean
average percentage error (MAPE) values. Note that, the Al
dataset prediction with GA search is a refinement of the one

in [16].

TABLE 11
GA SEARCH PERFORMANCES SUMMARY FOR THE DATASETS Al, M1, M2,

AND M3

Dataset GCV MSE MAPE (%)

Al 2.359 x 10717 1.67x 10720 294 x 1079

Ml 0.1443786 0.026062 8.11688

M2 0.07065457 0.018231566 9.556029

M3 0.06992612 0.01767 8.3484

3) Parameters search using particle swarm optimization
(PSO): In order to perform PSO search for the optimal
parameters, set the following fitness function

fitness(d, &, B) . ()

mness(a, o, = ==

fld,&,B)+1
where f (ci, Q, 5) is the GCV function as in equation As in
GA search setup, in this example the multi-degree d and the
number of knot points are fixed. Also, each solution candidate
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represented as a vector p; = |q;, B,) and the solutions
population is the set of all p;. The search objective is to find
p; which maximize fitness function (thus minimize f). The
PSO search proceeds according the following steps:

(a) Solution initialization: Generate p; = (di,Bi), 1 =
1,2,...,np0p, at random, such that

e < & < up,lp < Bi < up,

where n,,, is the number of solutions processed in
each iteration, [;, and wuj are the vector of lower and
upper bounds of bandwidths, respectively, and [; and
uy, are the vectors of minimum and maximum values of
corresponding independent variables, respectively.

(b) Personal best initialization: Let pb; be the current per-
sonal best for solution p;. Set pb; = p;.

(c) Global best initialization: Let g be the current global best
solution. Find p; for some j € {1,2,...,npp} such that
fitness(p;) > fitness(p;), for all i. Then set g = p;.

(d) Particle speed initialization: Let v; be the particle speed
for solution p;. Set v; = (0,0,...,0).

(e) Particle speed update: Update the particle speed using
the following equation:

vi=vi+c1(phy —pi) Ri +c2(g—pi) B2 (8)

where c¢; and ¢y are constants such that 0 <
c1,c0 < 4, Ry = diag (r%,r%,... rk ) and Ry =

7 Mpop

diag (r%, 3, ... ,TTQLPOP) with 7% ~ Uniform(0,1).

(f) Solution update: Update the solution p; using the follow-
ing equation:

Pi =Dpi + &)

(g) Update personal and global best: Use the following steps
to update personal and global best:

(g.1.) If fitness(p;) > fitness(pb;), then set pb; = p;.
(g.2.) If fitness(p;) > fitness(g), then set g = p;.
(g.3.) Repeat steps (g.1) and (g.2) for all 4.

(h) Repeat steps (d)-(g) until the maximum iteration reached
or the max_measure value criterion achieved

For more details on PSO, see [[12]]. Figures[OHI2]illustrate the
prediction results based on mixed kernel and spline truncated
regression with PSO search for all datasets.

Fig. 9.

Fig. 10.

Fig. 11.
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M3 dataset prediction with PSO
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Fig. 12. The M3 dataset prediction with PSO search

Table shows the summary of the performances of PSO
search for optimal parameters search. The performances are
measured by GCV, mean squared error (MSE), and mean
average percentage error (MAPE) values.

TABLE 111
PSO SEARCH PERFORMANCES SUMMARY FOR THE DATASETS Al, M1,
M2, AND M3
Dataset GCV MSE MAPE (%)

Al 6.04 x 10722 1.32x10~%® 1.065 x 10— 11
M1 0.1420934 0.025988 8.0799
M2 0.06799922 0.017978 9.3647
M3 0.06501043 0.017218 8.2632

III. CONCLUSIONS

In this study, we demonstrate that implementing metaheuris-
tic search methods — specifically the genetic algorithm (GA)
and particle swarm optimization (PSO) — in mixed truncated
spline and kernel regression models yields accurate non-
parametric estimates, with MAPE below 10%. This approach
can also be adapted for other non-parametric models with
minor modifications.
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