INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 2, DECEMBER 2025 53

A Probability Flux Approach for Binary Dynamics
on Networks

Mohamad Riyadi', Agus Yodi Gunawan?, and Dewi Handayani®

Abstract—Binary-state dynamics on networks provide a power-
ful framework for modeling epidemics and related spreading pro-
cesses. Two main approaches are commonly used, namely exact
continuous-time Markov chain (CTMC) formulations and mean-
field approximations. The CTMC approach ensures stochastic ac-
curacy but suffers from exponential state-space growth, whereas
mean-field approximations lose reliability in heterogeneous or
small networks. In this study, we formulate the master equation
for binary dynamics using a probability flux approach, yielding
an exact formulation for arbitrary networks. By integrating local
transition rules, network topology, and state-space partitioning,
the framework captures microscopic dynamics while enabling
macroscopic analysis. Numerical simulations reveal that both
state probabilities and expected infection levels are influenced
not only by mean degree but also by structural heterogeneity.
For instance, star and line topologies exhibit distinct behaviors
despite having identical connectivity. Spectral analysis confirms
the asymptotic stability of the disease-free equilibrium, while
invariance under node relabeling emphasizes the role of graph
symmetries in reducing state-space complexity. This work extends
flux-based theory to network epidemics and provides a founda-
tion for future studies on adaptive or time-varying networks.

Index Terms - Binary dynamics, probability flux, master equa-
tion, CTMC, epidemic processes, network topology, structural
heterogeneity.

I. INTRODUCTION

INARY dynamics on networks are a central theme in

network science. Numerous applications have been for-
mulated in this framework, such as the susceptible/infected
states in epidemic spreading [1], [2], [3], [4]], the voter
and ¢-voter models in opinion and social dynamics [3l],
[6], [7], [8], the Bass diffusion model for product adoption
[1O], contagion processes in social systems [11], [12]], or
quiescent—active—quiescent transitions in neuroscience [13].
These models provide a versatile framework for analyzing how
local interactions generate macroscopic spreading phenomena
in complex networks. Unlike well-mixed population models,
network-based approaches account for topological hetero-
geneity, which has been shown to shape transmission rates
and persistence patterns [3]. The explicit representation of
nodes (e.g., individuals or locations) and edges (e.g., contacts
or relations) further enables the analysis of graph-theoretic
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parameters—such as node degree—in examining how local
interactions drive global dynamics [14], [15].

While exact formulations based on continuous-time Markov
chains (CTMC) yield accurate stochastic descriptions, the
exponential state-space size (2V) renders them impractical
for large networks. Conversely, approximate schemes such as
mean-field and approximate master equations (AME) achieve
scalability at the cost of microstate-level accuracy, particularly
in small or heterogeneous graphs or when network symmetries
play a critical role [16l], [[L7], [[18]]. This methodological gap
highlights the need for a formulation that remains exact,
physically interpretable, and compatible with symmetry-based
reductions.

Addressing this gap motivates the use of flux-based ap-
proaches, whose conceptual foundation was introduced by
Schnakenberg [19] and later developed within stochastic ther-
modynamics to describe cycle currents, entropy production,
and nonequilibrium phenomena [20]], [21], [22]. In stochastic
chemistry and systems biology, probability flux has been
applied to study state flows, stochastic oscillations, and prob-
ability velocity fields [23]], [24]. However, its application to
binary dynamics on networks remains limited. Kiss et al.
[4] derived master equations using flux-based illustrations,
but only for the small case of N = 3, without providing a
systematic generalization.

This paper introduces a probability flux formulation that
is generic for arbitrary local transition rules, with explicit
construction for N = 3 and systematic generalization to larger
networks. Through numerical studies on diverse topologies
(complete, line, star, lollipop, toast, cycle), we show how
network structure influences probability distributions and the
expected number of nodes in a given status, as exemplified
in epidemic processes. In doing so, this work bridges exact
stochastic accuracy with structural insight and extends the
scope of flux-based theory to binary dynamics on networks.

The structure of this article is organized as follows. Section
II reviews relevant literature on network and continuous-time
Markov chains (CTMC), providing the theoretical foundation
for binary dynamics. Section III introduces the probability flux
approach to derive the master equation for binary dynamics
on networks. Section IV presents the detailed formulation of
the master equation, including an explicit derivation for the
case N = 3. Section V presents numerical simulations of the
Susceptible-Infected—Susceptible (SIS) model across different
graph structures, illustrating the effects of network topology on
the dynamics. Finally, Section VI concludes with a summary
of the main findings and outlines potential directions for future
research.
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II. LITERATURE REVIEW
A. Network

Network structures provide a powerful framework for mod-
eling interactions among discrete units in complex systems,
including the spread of infectious diseases. In contrast to well-
mixed population models, network-based approaches allow for
explicit representation of heterogeneous contacts, which are
critical for understanding the dynamics of contagion processes
[4].

A network is mathematically defined as a graph G = (V, E),
where V = {1,2,..., N} is the set of nodes (e.g., individuals
or cities) and & C V x V is the set of edges representing
interactions. The structure of a graph can be encoded in an
adjacency matrix G = (¢ij)i,j=1,...,n, Where g;; = 1 if node i
is connected to node j, and g;; = 0 otherwise. For undirected
simple graphs-used in this study-G is symmetric with zero
diagonal entries, implying the absence of self-loops.

A fundamental characteristic influencing epidemic spread
on networks is the degree distribution, which captures the
heterogeneity in node connectivity. For node ¢, the degree is

defined as:
N
ki = 9ij;
=1

and the average degree is given by:

1 N 1 N N
by =5 D_ki=D_D 0
=1

i=1 j=1

B. CTMC

To describe the temporal evolution of states on such net-
works, we employ the framework of continuous-time Markov
chains (CTMCs). Let S(t), a random variable, denote the
system state at time ¢, taking values in the finite state space
S ={&51,8s,...,8,}, where n is the number of states. The
transition rate from state S; to S§;, for ¢ # j, is denoted
by h(S;,S;). The diagonal elements are defined to ensure
conservation of probability h(S;,S;) = —Z#i h(S;,S;),
so that the total probability flux out of each state is zero
> i—1 h(Si,Sj) = 0. Letting gi; = h(S;, S;), we define the
generator matrix Q = [g¢;;] € R™*™, where each row sums to
zero and ¢;; > 0 for ¢ # j.

The transition probability over a small time interval Jt
satisfies

P(S(t+6t) =S, | S(t) = Si) = h(Si, S;)6t + o(6t),

where o(0t)/6t — 0 as 0t — 0. Applying the law of
total probability yields the master equation for the probability
Xj(t) = P(S(t) = Sj):

dX;(t) <
— = E i X ().
di 2 dij (t)
In matrix form, this becomes

X = PX, (1)

where X = (X1,...,X,,)" and P is the transpose of the
rate matrix Q, defined by Pj; = ¢;; for j # ¢ and Pj; =

- +; 4jk- Each column of P sums to zero, preserving the
total probability mass.

III. MASTER EQUATION FOR BINARY DYNAMICS
ON NETWORKS: A PROBABILITY FLUX
APPROACH

In binary dynamics on networks, each node can be in one
of two statuses, such as ) (quiescent) or 7' (transmitting)
and change over time. Assuming a Markov process with
exponentially distributed inter-event times and local transition
rates that depend only on a node’s status and the number of
neighbors in each status, the system forms a CTMC on a
finite state space of size 2. Under these assumptions, the
master equation can be constructed [25]. Here, we formulate
the master equation for binary dynamics on arbitrary graphs
using a probability flux approach. This formulation adapts
the general framework of [4], including the use of binary
status notation () and 7', which can represent a wide range of
spreading processes such as epidemics, information diffusion,
or behavioral adoption in networks.

For a network with /N nodes, there are possible states.
The state space S = {Si,...,Syv} can be partitioned
into {€©,¢W ... ¢™M}, where ¢ = {ka),...,Sé,’f)}
contains all states that have exactly k£ nodes in status 7T’
with ¢ = (],X) From any S](-k) S C(k), transitions occur

2N

only to ¢+ (exactly one node changes @ — T') or to
c=1 (exactly one node changes 1" — (J), and vice versa,
as illustrated in Figure |1} At the boundaries, C© transitions
only to ¢ and c™V) only to CN=1)_ The transition rates are
determined by (i) the process mechanism—uvia the functions
for and fro—and (ii) the network topology, represented by
the adjacency matrix G = (g;;)i,j=1,...n, Which specifies,
for each node, how many neighbors are in each status. If
node [ is @ in Sj(k), the Q — T transition to a state in
c* 1) occurs at rate fQT(nT(l,S](-k))), where nT(l,Sj(-k))
denotes the number of T-neighbors of [ in state S](k). If node
lis T, the T — (@ transition to a state in c* =D occurs
at rate fTQ(nQ(l,SJ(-k))), where nQ(LSJ(-k)) is the number
of Q-neighbors. For simplicity, for and frg may be taken
to depend only on these neighbor counts, although more
general dependencies are possible. The master equation is then
constructed on this state space using these transition rates.

<N\N\A

IR0

\N\A >

ctk=1) c k1)

Fig. 1: Influx and outflux between classes of states

The dynamics over the state space can be modeled as a
CTMC. Let X ](-k)(t) be the probability that the network is in

state SJ(.k) at time ¢, for j = 1,..., c,. Define the vector

X)) = (xP(0), x00),... xOw)

which has dimension ¢ for £ = 0,1,..., N. The transitions
described above lead to the master equation for each X ](-k)(t).
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The master equation is derived using the concept of prob-
ability flux, which represents the rate of change in the prob-
ability of being in a specific state due to transitions to and
from other states. Specifically, the probability flux from state
SJ(-k) e €™ 1o states in C*TY or ¢~V is determined by
the corresponding transition rate multiplied by X J(k) (t).

For a given state SJ(-k), the total probability flux consists of:

Influx: Transitions from states in classes (kK — 1) and (k + 1)
to S, which include

(i) Transitions from Si(kfl) — S](-k) occur when the two states
differ at exactly one node [/, which changes from @ to
T. Each state in C*) can be reached via up to k£ such
transitions from C*~). The r-th transition rate is denoted
ng_l) = fQT(nT(l, Si(k_l))), with r = 1,..., k. Here,
nr(l, Si(k_l)) is the number of neighbors of node [ with

status 7" in Sl-(kfl), computed as

l S(k 1)

Z(S gil,

1#£l

where 0; = 1 if node 7 is in status 7" in ka_l), and §; =0
otherwise.

(ii) Transitions from S; - S ](k) occur when the two states
differ at exactly one node [, which changes from 7" to Q.
Each state in C'®) can be reached via up to N — k such
trar];si}ions from CF+1), T1£161r_th transition rate is denoted
G = fro(ng(l, S, with r = 1,...,N — K,
and ng (l, Si(kH)) is the number of neighbors of node [

Si(k+1)

Sj(k+1)

, calculated as

26 gil»

1%l

with status @) in
no(l, s! k+1

with §; = 1 if node 7 is in status () in 8 (k+1)

otherwise.

,and §; =0

Outflux: Transitions from S\*) (o states in classes (k—1) and
(k + 1), involving a change in the status of one node. Each
such transition corresponds to

(k—1)

i A recovery at node [: transition S k) _, S; , with rate

Gg ,forr=1,... k.
(i) An infection at node [: transition Sj(k) — Si(kﬂ), with rate
el N—k.
The time evolution of X ;k) (t) consists of influx and outflux
terms, yielding the master equation

y,forr=1,...,

N—-Ek
Xj(k) ZGk 1) (k n 4 Z G(k+1)X(k+1)
r=1 r=1
N—k k
_ <Z G +ZG$1<+)> x (k)
r=1 r=1
kE=0,1,..., V. )

Here, Xﬁkil) and X,,(.kﬂ) represent the probabilities associ-
ated with incoming transitions to the state S;k). Equation (2)

defines a coupled system consisting of 2V differential equa-
tions, corresponding to the full state space of the process. This
system can be expressed in Equation (I), where P has a block
tridiagonal structure. The tridiagonal nature of P reflects the
fact that transitions only occur between neighboring classes
C(k_l), C(k), and C**D | The structure of this block tridiag-
onal master equation has been described in detail in [15], [4],
and [25]].

IV. FORMULATION

We formulate the master equation for binary dynamics on
arbitrary graphs. While Equation (2 applies to the case N =
2, we omit detailed discussion since it only yields a trivial
line graph with limited exploratory value. For N > 2, more
diverse graph structures can be formed—such as complete or
line graphs—which allow for richer exploration. Each node in
the graph can be in one of two binary statuses: ) or 1. For
N = 3, the total number of possible system states is 23 = 8.
For binary-state dynamics on a triangle graph, the Markov
chain spans the state space

S ={QQQ,QQT,QTQ,TQQ,QTT, TQT,TTQ,TTT}

with each element specifying the configuration of nodes 1-3.
As an example, QQT corresponds to nodes 1 and 2 being in
status (), and node 3 in status 7. We define the partition

S = {C(O)’c(l)’c@)’c@)}7
with

¢ = {QQQ},

¢ = {QQT,QTQ,TQQ},
Cc?® = {QTT, TQT,TTQ},
c® = {177},

and ¢ for k =0,1,2,3 equals 1, 3, 3, and 1, respectively.
The possible transitions between partition classes are shown
in Figure [2] while all state configurations and their transitions
are illustrated in Figure[3] where a transition occurs only if the
two states differ by one node. At most one transition can occur
at a time, although the interval between transitions can be
arbitrarily small. For example, consider the state QQT € C M
as highlighted in Figure [3] Its p0551ble transitions (influx and
outflux) involve {QQQ} € €9 and {QTT,TQT} € C?.

> AN >

c© c c@ c®
PRVIVAY, >

nadVAVAVA'

Fig. 2: Influx and outflux between the four partition classes
c® for k=0,1,2,3.

In the transition from {QQQ} € ¢ 0 QQT € ¢,
differing only at node 3, the transition rate is given by

Gt = fQT<nT< 3))
= for Z6igi3
il
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Fig. 3: Nodes in status ) (O) and 7' (O) are represented by
color-coded filled circles.

= for(d1913 + 62923)

= fQT(O)7
since §; = o = 0, i.e., no nodes in status 7" in configuration
QQQ. For transitions {QTT,TQT} € ¢® — QQT e ¢V,
which differ at node 2 and 1 respectively, the transition rates
are:

G = fro(d1g12 + 03932) = fra(g12),
G§2) = frq(02921 + d3931) = frq(g21),

where 61 = d, = 1 since nodes 1 and 2 are in status @ in
QTT and TQT, respectively, and §3 = 0 because node 3 is
in status 7.

For the reverse (outflux) transitions from C M 0 ¢ and
C?, the rates are similarly computed as

2
> G = for(gs) + for(gs2),
r=1

1
TGN = frolgis + gas)-
r=1

We denote Xqgor as the probability that the network is in
state QQT. The probabilities corresponding to transitions from
other states into QQT are Xggq as well as Xorr and Xrgr.
The evolution of Xqgr, and all other state probabilities,
follows from the master equation. For a general graph with
N = 3 nodes, the master equations are given as follows

Xoqq = fro(gis + 923)Xoor + fro(9i2 + 9s2) Xorq
+ frq(g21 + 931)Xrqq — 3for(0)Xqaq
Xqqr = for(0)Xqqq + fro(gi2) Xorr + frq(ge1) Xror

— (frq(g13 + g23) + for(931) + for(932)) Xqor
XQTQ = for(0)Xqq + frq(g13) Xerr + frq(gs1) Xrrq
— (frq(gi2 + g32) + for(923) + for(921)) XoT@
X1qq = for(0)Xaeq + fro(92s)Xror + fro(gs2) Xrro
— (frq(g21 + g31) + for(912) + for(913)) XTQQ
Xorr = frq(0)Xrrr + for(gs2) Xgar + for(g23)Xora
= (frq(912) + fro(913) + for(g21 + g31)) Xorr
Xrgr = fro(0)Xrrr + for(gsi) Xaar + for(gis) Xroq
= (frq(921) + fro(g23) + for (912 + g32)) Xror
Xrrq = fro(0)Xrrr + for(g:1)Xerq + for(912) X1oq
— (frq(gs1) + frq(gs2) + for(g13 + g23)) X170
Xrrr = for(gor + g31) Xorr + for(gia + g932) Xror
+ for(913 + 923) XrrQ — 3fro(0) Xrrr 3)
Equation (3) is identical to the master equation for binary

dynamics on an arbitrary graph with N = 3 as presented in
[4]]. Similarly, the master equation for N = 4 can be derived.

V. SIS MODEL SIMULATION ACROSS GRAPH
STRUCTURES

We conduct simulations of the model over several network
structures for NV = 3 and N = 4 nodes. The graph variations
used in the simulation are illustrated in Figures [ and [3]
Without loss of generality, we focus our discussion on disease
spread governed by the SIS dynamics on networks.

(a) (b)

Fig. 4: (a) Complete graph; (b) Line graph with N = 3 nodes.

ORI Ol O
Gl o &g
0 O 0
(@) (b) (©)
H e @
& O Q6
0 O 0
(d) (e ®
Fig. 5: Examples of N = 4 graph topologies: (a) complete,
(b) toast, (c) cycle, (d) lollipop, (e) star, and (f) line graph.
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In this model, each node exists in one of two possible
states: susceptible (5) or infected (I), corresponding to the
binary states ) = .S and T' = I. The system evolves through
two types of transitions: infection and recovery. The infection
rate is defined as fsr(n) = 7n, where n is the number of
infected neighbors and 7 is the per-contact transmission rate.
In contrast, the recovery rate is assumed constant and given
by frs(n) = v, independent of neighbor status.

Let X 4 pc denote the probability that the network is in state
ABC, where each letter represents the status of a node: .S or
I. The master equation for SIS dynamics on a complete graph
with N = 3 nodes is derived as follows.

Consider, for instance, the state Xgg7. The infection and

recovery rates are given by fs;j(n) = 7n and frg = 7,
respectively. The adjacency matrix of the complete graph with
N =3
0 1 1
G=1|1 0 1
1 10

From Equation |3| the time evolution of Xgg; is given by:

Xssr = fs1(0)Xsss + f1s(g12)Xsr1 + frs(g21)Xrs1
— (frs(g13 + g23) + fs1(g31) + fs1(g32)) Xss1
=v(Xsrr+ Xrsr) — (27 +v) Xssr,
where we used fg7(0) = 0 and substituted adjacency values

from G. This procedure applies analogously to all other states,
resulting in the full master equation for the system, namely

Xsss = ¥(Xss1 + Xsis + X1ss)
Xssr =(Xsrr + Xrsr) — (27 +7) Xssr
Xsrs = ¥(Xsrr + Xirs) — (27 +7) Xs1s
Xiss =v(Xrs1 + Xirs) — (27 +7)X1ss 4
Xsir =X +7(Xssr + Xsrs) — 2(1 +7) Xsir
Xis1 =vX1r +7(Xssr + Xiss) — 2(7 +7) Xrs1
Xi1s = vX111 +7(Xsrs + Xrss) — 21 +7) X115
Xrir = —=3vX1r1 +27(Xsir + Xrsr + Xirs)

For simulation, the initial condition assumes a single in-

fected node with probability 1/N. Since there are (]f ) such

states, the initial probability of each individual state in c®
is given by

X(0) = (0,1/9,1/9,1/9,0,0,0,0)T for N = 3,
X (0) = (0,1/16,1/16,1/16,1/16,0,...,0)T for N = 4.

On a complete graph, all states with the same number of
infected nodes are equivalent due to node symmetry (graph
automorphism) [4]. For N = 3 and N = 4, the dynamics
of states in the same class C*) are identical, as illustrated in
Figure [§

In the line graph with N = 3 (Figure [dp), symmetric states
can be identified by reflection across the central node. For
example, states SST and 1SS are equivalent, as are SII and
I1S. Hence, the 23 state space can be regrouped as:

¢ = {555},

— Xsss

—— Xsst, Xsis. Xiss
Xsit, Xisi: Xus

— Xun

Fig. 6: Probabilities X spc and X apcp for the complete
graph with 7 = 0.7 and v = 0.3.

et = (SIS},
i = {1813,

eV = {881,155},
c\? = {SII,1I5},
c® = {III}.

The resulting dynamics for this
Figure [7]

topology are shown in

— Xsss

— Xssi Xiss
Xsis
— Xsu, Xus
Xist
— Xu

Fig. 7: State probabilities X 4pc for the line graph with 3
nodes; 7 = 0.7, v = 0.3.

For the set of six graph structures with N = 4 nodes
shown in Figure [ the state probabilities are presented in
Figure [8] Simulations indicate that the probability distribution
over states is highly dependent on the connectivity of the
underlying graph. Specifically, graphs with higher connectivity
tend to have a greater probability mass concentrated in the
fully infected state.

Numerical investigations show that in isomorphic graphs
with identical node statuses, system dynamics remain invariant
under node relabeling, even though the state representation
changes. An illustrative example is given in Figure[0] Consider
a line graph with N = 3 nodes labeled sequentially as 1—-2—3,
with the network state denoted by SST and probability Xgg;.
Suppose the node labels are permuted to form a new sequence
1—-3—2, while the node-level statuses remain S.SI. Under this
relabeling, the state is mapped to SIS with corresponding
probability Ys;g, where the ordering of nodes is preserved
from 1 to 3. Despite the relabeling, the time evolution of
Xgsr is identical to that of Yg;g. This invariance holds
when transition rates are homogeneous and depend only on
permutation-invariant neighborhood statistics, but it breaks
down in the presence of node or edge heterogeneity, or other
structural asymmetries.

Because system dynamics are invariant under node rela-
beling, analysis can focus on expectation values rather than
individual trajectories. The expected number of infected nodes,
[I](t), is obtained as the weighted sum of infected nodes across
all configurations [25]. This captures macroscopic outcomes
without dependence on arbitrary labeling.

Numerical simulations show that network topology strongly
influences infection prevalence. As illustrated in Figure [10]
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Xasco

= Xsm Xusi Xins

— Xun

(e) Line

Fig. 8: State probabilities X 4pcp across graph topologies
with 7 = 0.7, v = 0.3.

(a) (b)

Fig. 9: Invariance under node relabeling on isomorphic line
graphs with N = 3 (O = susceptible, O = infected). (a)
Labeling 1-2-3 yield the state SSST and probability Xgg;. (b)
Relabeling to 1-3—-2 maps the same node-level configuration
to SIS with probability Ysrs.

denser graphs with higher average degree, such as the com-
plete ((k) = 3) and toast ((k) = 5/2) graphs, sustain
higher [I](t). By contrast, sparse networks like line and
star ((k) = 3/2) exhibit lower prevalence due to limited
transmission pathways. Circle and lollipop graphs ((k) = 2)
fall between these extremes, highlighting the combined role
of degree distribution and structural features.

These findings indicate that both probabilities that the
system in a given state and expected infection levels depends
not only on average degree but also on structural heterogeneity.
For instance, the star and line graphs share the same (k) yet
differ in dynamics due to centralization and path length. This
supports theoretical results that both average connectivity and
network topology shape epidemic stability and persistence [3]],
[14].

Spectral analysis of the transition rate matrix is key to
understanding the long-term behavior of SIS epidemiological

1.0

Complete, <k> =3
Toast, <k>=5/2
Circle, <k>=2
Lollipop, <k>=2
Star, <k>=3/2

Line, <k>=3/2
Kk Bl
'x‘*z‘i‘!tv_*!n*&”ﬂ
A %
20 25 30

Fig. 10: Expected value [I](t) across different network topolo-
gies (N = 4), highlighting the impact of average degree and
structural heterogeneity.

systems. We consider the disease-free equilibrium, character-

20 & FEigen Value
15
10
05
0.0

—0.5

Imaginary Part

-1.0

-15
-2.0

5 4 3 2 a0 1

Real Part
Fig. 11: Gershgorin disks (circles) and eigenvalues (red dots)
of the transition rate matrix P for a continuous-time Markov
chain modeling SIS dynamics on a complete graph with
N = 3 nodes. All eigenvalues lie within the left half of
the complex plane, confirming that the real parts are non-
positive. This supports the conclusion that the system exhibits
asymptotic stability or converges to an absorbing disease-free
state.

ized by X = 0 in Equation (1. Since the first column of P
consists entirely of zeros [23], the system has a steady-state
solution X* = e, representing the state in which all nodes
are susceptible. To assess the stability of this equilibrium,
we apply the Gershgorin Circle Theorem [15]. Applying
this theorem to the column structure of P, we find that all
Gershgorin disks are centered on the negative real axis and lie
entirely in the left half of the complex plane. This implies that
all eigenvalues have non-positive real parts, Re(\) < 0, which
guarantees that the system asymptotically approaches a stable
or absorbing state. Figure [[1] illustrates the spectral structure
of the transition rate matrix P using Gershgorin disks and its
eigenvalues.

VI. CONCLUSIONS

This study formulated the master equation for binary dy-
namics on arbitrary networks using a probability flux ap-
proach, providing an exact and interpretable alternative to
mean-field approximations. By incorporating local transition
rules, network topology, and state-space partitioning, the
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method provided a description of spreading processes across
diverse graph structures.

Numerical simulations showed that both state probabilities
and expected infected nodes depend not only on average
degree but also on structural heterogeneity, with topologies
such as stars and lines exhibiting distinct dynamics despite
identical mean connectivity. Spectral analysis confirmed that
the disease-free equilibrium was asymptotically stable, as all
eigenvalues of the transition rate matrix had non-positive real
parts. Moreover, invariance under node relabeling highlighted
the role of graph symmetries in reducing state-space complex-

1ty.

These findings extend flux-based theory to epidemic and
binary-state dynamics on networks, with potential applications
to modeling disease spread in urban contact networks and
diffusion processes in social or technological systems. Future
work warrants explore extensions to time-varying or adaptive
networks, offering insights into resilience and control strate-
gies in dynamic environments.
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