
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL. 11, NO. 2, DECEMBER 2025 76

A Patch-Based Transformer Approach to Nonlinear
Dynamics Natural Gas Price Forecasting

Muhamad Syukron

Abstract—Natural gas prices are a critical economic indicator
influencing various sectors of the global economy. Accurate fore-
casting is essential for effective policy formulation and strategic
decision making. However, natural gas price movements often
exhibit complex non-linear patterns that traditional statistical
time series models fail to capture. Furthermore, many deep
learning architectures struggle to effectively model these intricate
dynamics. To address this challenge, we employ the Patch-Based
Transformer (PatchTST) model for natural gas price forecasting.
The comparative results reveal that PatchTST achieves sub-
stantially higher predictive accuracy than both statistical and
other deep learning models. Its Transformer-based architecture,
combined with patching and channel independence, enables the
model to effectively capture both temporal dependencies and
localized variations. The model achieved mean squared error
(MSE) and mean absolute percentage error (MAPE) values of
0.1176 and 7.57%, respectively. These findings demonstrate that
PatchTST provides robust and precise forecasts, offering valuable
insights for decision-making in the energy market.

Keywords: Natural Gas, Time Series Forecasting, Transformer
Model, Energy Market Prediction.

I. INTRODUCTION

THE global energy landscape is undergoing a transition
toward low-carbon sources in response to international

climate agreements such as the Paris Accord [1]. Renewable
energy has expanded rapidly in recent years, yet fossil fuels
continued to supply around 80% of global primary energy
in 2018 [2]. Long-term projections further indicate that fossil
resources will remain a central component of the energy
system for several decades [3], [4]. Within this group, natural
gas is expected to play a particularly resilient role, with
demand either increasing or declining at a slower pace than
coal and oil even under stringent climate policy scenarios [2].
These trends highlight the enduring significance of natural gas,
making the study of its price dynamics and forecasting an
important research priority.

In the United States, natural gas has strategic significance
both domestically and globally. It is the dominant fuel for
power generation, a critical input for industries, and an impor-
tant source of household heating. Price volatility therefore has
direct consequences for inflation, household expenditure, and
industrial competitiveness. At the same time, the United States
has emerged as the world’s largest exporter of liquefied natural
gas, supplying Europe and Asia in the wake of disruptions
caused by the Russia–Ukraine conflict [5], [6]. This dual role
as a major consumer and exporter makes natural gas price
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prediction particularly important for U.S. policymakers. More-
over, as natural gas continues to be positioned as a transitional
fuel in U.S. decarbonization strategies, accurate forecasting is
vital for balancing climate objectives with energy security and
economic stability.

The prediction of natural gas prices has been approached
using different models. Econometric methods such as autore-
gressive (AR) [7], time-varying coefficient stochastic volatility
(TVCSV), Markov switching (MS) [8] and hybrid models
have been applied to capture market dynamics. However,
these models often face limitations when dealing with non-
linear structures and sudden regime shifts [9]. Deep learning
approaches such as recurrent neural networks (RNNs) [10] and
long short-term memory (LSTM) [11] networks have also been
explored. Some studies combine them with decomposition
techniques and attention mechanisms to improve accuracy
[12]. Despite these advances, deep learning models still strug-
gle with vanishing gradients, limited parallelization and the
challenge of modelling long-range dependencies. To overcome
these issues, this study adopts a Transformer-based [13] frame-
work especially Patch-Based Transformer (PatchTST) [14] to
capture both short-term fluctuations and long-term patterns in
natural gas prices.

II. PRELIMINARIES

Recent research has explored a wide range of frame-
works for natural gas price forecasting, spanning econometric
specifications, hybrid machine learning techniques, and deep
learning architectures. Gao, Hou, and Nguyen [9] examined
flexible econometric models across the U.S., European, and
Japanese markets. Their analysis focused on time-varying
coefficient stochastic volatility (TVCSV) models, Markov
switching (MS) models, and hybrid extensions. The findings
indicated that stochastic volatility and regime-switching struc-
tures enhanced predictive accuracy. However, these models
remain constrained by their reliance on linear dynamics and
fixed regimes, which limit their capacity to capture nonlinear
interactions and abrupt structural breaks.

To address these non-linearities, Lin et al. [12] proposed a
hybrid framework that integrates improved complete ensemble
empirical mode decomposition with adaptive noise (ICEEM-
DAN) [15], stacked long short-term memory (STLSTM)
networks, temporal convolutional networks (TCN) [16], and
convolutional block attention modules (CBAM) [17]. In this
framework, ICEEMDAN mitigates noise through adaptive de-
composition, while STLSTM enhances memory representation
for long-term dependencies. The TCN component captures
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multi-scale temporal dynamics, and CBAM focuses attention
on the most informative features during extraction. Although
this approach achieved strong predictive performance across
various sliding windows, its architectural complexity required
extensive hyperparameter tuning and substantial computational
resources, limiting its practicality for real-time forecasting.

Another study by Zheng et al. [18] studied how geopolitical
shocks affect natural gas prices. They proposed a hybrid
model called FSGA SVR to forecast Henry Hub prices during
the Russia and Ukraine conflict. The model used feature
selection to identify the most important predictors. A ge-
netic algorithm was then applied to optimize the SVR [19]
parameters. This combination improved both accuracy and
stability under conflict-driven volatility. However, dependence
on SVR reduced adaptability compared with deep learning
methods. The regional focus also limited the model’s ability
to generalize to other markets with different pricing patterns.

Taken together, the literature underscores the trade-offs
across different modeling approaches. Econometric models
provide interpretability but lack the flexibility to represent
nonlinear dynamics. Traditional machine learning methods
such as SVR improve feature selection and maintain stability
under certain conditions but underperform relative to deep
learning models. Deep learning methods such as TCN and
LSTM achieve higher predictive accuracy and robustness but
are hindered by high computational costs and limited scala-
bility. Motivated by these challenges, this study investigates
a patch-based Transformer architecture for natural gas price
forecasting that leverages parallelization for efficiency. In
addition, we benchmark its performance against the statistical
time-series models such as ARIMA [7] and state-of-the-art
alternative deep learning models including AutoFormer [20],
Informer [21], and DLinear [22].

III. RESEARCH METHODS

A. Transformer Model

The Transformer is a deep learning architecture that has
demonstrated outstanding performance across various do-
mains. It was first introduced for natural language processing
tasks, as seen in models such as BERT [23], and was later
adapted for image recognition in architectures like the Vision
Transformer [24]. The key strength of the Transformer lies
in its attention mechanism, which enables the model to learn
long-range dependencies and focus on the most relevant parts
of the input sequence. This capability allows it to outperform
traditional models that rely on fixed-size context windows.
Although it is widely used in image and text processing, this
study explores its potential for numerical time series forecast-
ing, where understanding temporal dynamics and nonlinear
dependencies is crucial.

The Transformer architecture consists of two main compo-
nents: the encoder and the decoder (See Fig. 1). The encoder
is responsible for processing input sequences and generating
meaningful feature representations, while the decoder trans-
forms these representations into output sequences. However,
for forecasting tasks, sometimes the decoder is not necessary.
Therefore, the PatchTST model employs only the encoder

component to learn temporal representations directly from the
input data.

Fig. 1. Transformer Architecture [13]

B. Patch-Based Transformers

PatchTST is a Transformer based model designed for long
term time series forecasting [14]. It supports univariate settings
through its channel independent architecture. The training and
forecasting pipeline for PatchTST is illustrated in Fig. 2. First,
the past series Xpast is divided into a sequence of patches,
where each patch contains a fixed number of consecutive
values. These patches are created using a predefined patch size
and stride, which control how the window moves along the
input sequence. After patching, the model treats each patch as
a token and processes the sequence of tokens using a standard
Transformer encoder.

The channel independent design allows the model to treat
each variable separately in the multivariate case. This design
avoids direct interactions between variables and helps the
model capture temporal dependencies more effectively. In
univariate setting, this structure becomes even simpler since
the data contains only one channel.

The encoded patch representations are then passed through
a linear projection layer to produce the final forecast. This
step maps the learned temporal features into the prediction
horizon without relying on any auxiliary variables. As a
result, PatchTST can forecast future values directly from the
historical univariate series.

C. Evaluation Metrics

To evaluate forecasting performance on the test set, we em-
ploy two common error metrics, namely the Mean Squared Er-
ror (MSE) and the Mean Absolute Percentage Error (MAPE).

MSE is used to measure the average squared deviation
between the predicted and actual values, giving greater weight
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Fig. 2. PatchTST Architecture [14]

to large errors and providing a clear indication of overall pre-
diction accuracy. However, because MSE is scale dependent,
it cannot be directly interpreted in relative terms.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

To complement this, we also use the Mean Absolute Per-
centage Error (MAPE), which expresses forecasting errors as
a percentage and enables scale-independent comparison across
different models and datasets.

MAPE =
100
n

n

∑
i=1

∣∣∣∣ yi − ŷi

max(|yi|,ε)

∣∣∣∣ (2)

Here, ε is a small positive constant introduced to prevent
numerical instability when yi is close to zero. In this study, ε

is set to 10−6.

IV. RESULT AND DISCUSSION

A. Dataset

In this study, the dataset used is historical data of close
price for natural gas commodity futures. This dataset consists
of daily data over a five-year period, from June 24, 2020,
to June 24, 2025, obtained from the Investing.com platform
[25]. The data only includes exchange working days, excluding
weekends and market holidays. Table 1 shows the statistical
description of the data set.

TABLE I
DESCRIPTIVE STATISTICS ON CLOSE PRICE OF NATURAL GAS FUTURES

IN 2020-2025

Variable N Mean St Dev Min Max
Close Price 1,314 3.78 1.76 1.54 9.65

Based on Table I, the dataset comprises 1,314 observations
of natural gas futures from 2020 to 2025, with an average
closing price of 3.78 USD per Million British Thermal Units
(MMBtu) and a standard deviation of 1.76. The highest

Fig. 3. Time Series Plot for Close Price of Natural Gas Futures in 2020-2025

observed price was 9.65 USD on August 22, 2022, while the
lowest was 1.54 USD on June 26, 2020.

Fig. 3 illustrates the highly dynamic and volatile movement
of natural gas prices over the past five years. There was a
significant increase followed by a sharp decline, then a period
of consolidation, and finally a gradual rise again.

B. Implementation Details

The dataset was divided into training, validation, and testing
sets with proportions of 70%, 20%, and 10%, resulting in
919 samples for training, 262 for validation, and 133 for
testing. For ARIMA and SARIMA, a fixed origin evaluation
strategy was adopted to estimate the parameters p,d,q and
P,D,Q. This approach avoids repeatedly retraining the models
under a rolling origin scheme, which would significantly
increase computational cost. In addition, SARIMA requires
a sufficiently long historical series to reliably capture seasonal
patterns extending beyond one month.

The same fixed origin strategy was also applied to Holt
Winters, TBATS [26] and Prophet [27]. These models rely
on long historical patterns to estimate level, trend, and one
or multiple seasonal components. Using a fixed origin ensures
that seasonal structures, such as weekly and semiannual cycles,
are learned from the full available training and validation data,
leading to more stable and consistent parameter estimation.

For the deep learning models, which are AutoFormer, In-
former, and DLinear, rolling origin (sliding window) evalua-
tion was employed with a window size of 60 working days.
PatchTST also used a 60 working day rolling window. How-
ever, its input sequence was further segmented into patches
of size 20 with a stride of 20, resulting in an input shape of
3×20 at each forecasting step.

All models performed multi-step forecasting with a pre-
diction horizon of 20 working days. For statistical models,
forecasts were generated iteratively in 20-day windows using
a fixed-origin training scheme. For the deep learning model,
iterative predictions were made for 20-day horizons using the
previous 60 days as input. In both cases, this rolling procedure
was repeated until a total of 140 forecasts were produced.
Only the first 133 predictions were used to compute MSE
and MAPE, as ground truth values beyond this range are
unavailable. When multiple predictions were generated for
the same day due to overlapping windows, the forecasts were
averaged to obtain a single value per day for evaluation. No
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data leakage occurred, as all models were trained exclusively
on the training dataset.

C. Model Configuration

For AutoFormer and Informer, the hidden dimension is
set to 64 and the feedforward dimension to 128 in both
the encoder and decoder blocks. Each model employs four
attention heads, two encoder layers, and one decoder layer.
The GELU activation function is adopted.

DLinear does not follow an encoder–decoder architecture.
Instead, it decomposes the input time series into trend and sea-
sonal components using moving average filtering. Independent
linear layers are applied to each component, and their outputs
are summed to generate the final forecast.

For PatchTST, the hidden dimension is set to 128 and
the feedforward dimension to 256. The model employs four
attention heads and three encoder layers. Patch tokenization is
applied with a patch length of 20 and a stride of 20.

To ensure a fair comparison, all models are trained using
the same optimization strategy. The Adam optimizer is used
with a batch size of 32 for 100 epochs. The learning rate is
fixed at 0.0001, and Mean Squared Error is employed as the
loss function.

For the ARIMA model, the orders (p,d,q) were selected
based on the results of the Augmented Dickey Fuller test and
the analysis of the ACF and PACF, as discussed in the Results
and Discussion section. For SARIMA, Holt Winters, TBATS,
and Prophet, the seasonal parameters were determined through
an inspection of the historical time series plot.

For the Holt Winters model, the smoothing parameters were
fixed to α = 0.2, β = 0.1, and γ = 0.3 to ensure stable learning
of the level, trend, and seasonal components. The choice of
α = 0.2 implies that 20% of new information is incorporated
at each update, while 80% of the previous level is retained.
The small value of β = 0.1 reflects the weak and inconsistent
trend observed in the data. The seasonal smoothing parameter
γ = 0.3 was selected to allow moderate adaptation to the
half yearly seasonal pattern, which is present but not strongly
pronounced.

All experiments, including both statistical and deep learn-
ing models, were conducted on Google Colab using Python
3.12.12 with approximately 12 GB of RAM, an AMD CPU,
and an NVIDIA T4 GPU.

D. Model Evaluation and Comparison

The initial comparison employed the statistical model
ARIMA. To assess the stationarity of the time series, we
performed the Augmented Dickey-Fuller (ADF) test [28]. The
test returned a statistic of −1.58 with a corresponding p-value
of 0.48, indicating that the series is non-stationary at the 5%
significance level. Consequently, differencing was applied to
achieve stationarity. After differencing, the ADF test yielded a
statistic of −13.43 and a p-value of 3.87×10−25. This result is
well below the 5% significance level, leading to the rejection
of the null hypothesis and confirming that the differenced
series is stationary.

Fig. 4. ACF and PACF Plot

TABLE II
TOP 5 ARIMA MODELS BASED ON LOWEST AIC VALUE

Rank ARIMA (p, d, q) AIC BIC
1 (2, 1, 2) -250.82 -226.74
2 (3, 1, 2) -249.65 -220.75
3 (2, 1, 3) -249.64 -220.74
4 (3, 1, 3) -249.48 -215.77
5 (4, 1, 3) -249.45 -210.92

Since first-order differencing was required, the differencing
parameter d in the ARIMA model was set to 1. To deter-
mine the autoregressive (p) and moving average (q) orders,
we examined the autocorrelation function (ACF) and partial
autocorrelation function (PACF) plots, shown in Fig. 4. The
plots indicate that lags 0 and 1 are significant. Based on this
observation, initial candidate values for p and q were 0 and
1. To ensure a broader search, we considered p and q values
in the range 0 to 5. The optimal model was selected based
on the Akaike Information Criterion (AIC) [29] and Bayesian
Information Criterion (BIC) [30], prioritizing the lowest AIC
value.

After performing grid-search, the five models with the
smallest AIC values are presented in Table II. The best-
fitting model was found to have parameters p = 2, d = 1, and
q = 2. The estimated coefficients were AR lag 1 = 0.2398,
AR lag 2 = −0.8789, MA lag 1 = −0.3192, MA lag 2 =
0.9015, with residual standard deviation σ = 0.0440. We
performed the Ljung-Box test [31] to assess the independence
of residuals and obtained a test statistic of 8.6437 with a p-
value of 0.56. This indicates that the residuals are uncorrelated,
confirming that the model adequately captures the temporal
dependence in the series.

After obtaining the best ARIMA model, the forecast was
generated using the optimal parameters, ARIMA(2, 1, 2), as
shown in Fig. 5. The predicted values have been transformed
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back to the original scale and are no longer in the differenced
form. However, the figure shows that the red line representing
the model’s predictions is nearly flat. This indicates that the
ARIMA model fails to capture the dynamic trend of the series
and instead produces approximately constant forecasts.

Fig. 5. Prediction Plot using Best ARIMA Model

Since ARIMA cannot capture volatility, we applied a sea-
sonal model, namely SARIMA. To determine the seasonal
period, we plotted the series as shown in Fig. 6, marking the
start of each month, quarter, and six-month period. The plot
indicates that a six-month seasonality is most appropriate, as
natural gas prices generally increase and then decrease within
each six-month cycle.

Fig. 6. Seasonality Detection Using Historical Plots

Given the identified six-month seasonal pattern, we mod-
eled SARIMA with parameters (p,d,q)(P,D,Q,120), where

120 working days approximate six months. The non-seasonal
differencing d was set to 1 based on ARIMA results, indicating
non-stationarity in the original data. Seasonal differencing D
was also set to 1, reflecting the observed seasonal pattern.
Values of p and q, as well as P and Q, were selected using a
grid search over 0,1,2. After testing 70 parameter combina-
tions, the best model was SARIMA(1,1,0)(0,1,1,120), with
the lowest AIC of −44.82.

Training the selected model on the training data yielded test
set MSE of 0.4555 and MAPE of 15.57%. The forecasting
results are shown in Fig. 7, where predicted values closely
follow the actual test data, although some underprediction is
observed.

Fig. 7. Prediction Plot using Best SARIMA Model

Next, we evaluated another statistical forecasting model,
Holt-Winters [32], which combines Simple Exponential
Smoothing (SES) [33] and the Holt method [34], allowing it to
capture both trend and seasonality. We set the seasonal period
to 120 days, consistent with SARIMA, and used additive
seasonality. The resulting forecasts are shown in Fig. 8. Similar
to SARIMA, Holt–Winters captures the start and end of the
test period well but tends to slightly underpredict in the middle.
Nevertheless, it achieves low test set errors, with MSE of
0.1245 and MAPE of 8.98%.

Fig. 8. Prediction Plot using Holt-Winters Model

We then applied two modern models, TBATS [26] and
Prophet [27]. For both models, we tested several seasonal
configurations, including weekly, monthly, quarterly, and six-
monthly cycles. The lowest errors were obtained using a com-
bination of weekly and six-monthly seasonality. Specifically,
TBATS achieved MSE of 0.3689 and MAPE of 15.44%, while
Prophet achieved MSE of 0.3128 and MAPE of 11.77%.

After training the statistical models, we evaluated several
state-of-the-art deep learning architectures. Fig. 9 presents the
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Fig. 9. Loss Training and Validation Dataset

training and validation loss curves of AutoFormer, Informer,
DLinear, and PatchTST over 100 epochs. The results show
that all models experience a sharp reduction in loss during
the early epochs, followed by convergence to stable values.
PatchTST exhibits higher volatility in the initial training phase
compared to the other models, yet it consistently stabilizes as
training progresses. Despite these early fluctuations, PatchTST
achieves one of the lowest final losses among all evaluated
models, highlighting its strong capability in capturing complex
temporal dependencies in natural gas price forecasting.

After training all models, the MSE and MAPE results are
summarized in Table III. All of the values are calculated using
the original units. The results indicate that some deep learning
models, such as AutoFormer and Informer, perform worse than
the statistical baseline, particularly the Holt-Winters method.
In contrast, DLinear and PatchTST demonstrate superior per-
formance by achieving substantially lower MSE and MAPE
values. Notably, PatchTST outperforms DLinear, the second-
best model, by a clear margin. Specifically, PatchTST attains
an MSE of 0.1176 compared to 0.1693 for DLinear, and a
MAPE of 7.57% compared to 8.67%.

TABLE III
COMPARISON MODEL BY EVALUATION METRICS SCORE

Model MSE MAPE
ARIMA 1.5547 31.68%
SARIMA 0.4555 15.57%
Holt-Winters 0.1245 8.98%
TBATS 0.3689 15.44%
Prophet 0.3128 11.77%
AutoFormer 0.6073 16.88%
Informer 0.3848 15.28%
DLinear 0.1693 8.67%
PatchTST 0.1176 7.57%

Fig. 10 shows the time series plot of the forecast result for
the test dataset using PatchTST as a best model. The predicted
values show fluctuations and correctly follow the trend patterns
of the latest data. This is indicating that PatchTST is capable
of adapting to current dynamics and providing realistic short-
term projections. These results further support the quantitative
findings, confirming that PatchTST not only achieves low error

Fig. 10. Prediction Plot using PatchTST

metrics but also generates forecasts that are consistent with the
observed temporal trends.

V. CONCLUSION

This study evaluates both statistical forecasting and ad-
vanced deep learning models for predicting natural gas prices.
The results demonstrate that PatchTST achieves the strongest
overall performance, with an MSE of 0.1176 and an MAPE
of 7.57%. Its Transformer-based architecture, combined with
patch-level tokenization and channel-independent processing,
enables the model to effectively capture both short-term fluctu-
ations and long-term temporal dependencies while maintaining
computational efficiency.

The findings also show that conventional statistical models
such as Holt–Winters are able to capture the overall trend
of natural gas prices but remain limited in modeling high-
frequency volatility and abrupt price movements. In con-
trast, deep learning models are not guaranteed to outperform
statistical approaches in all cases, as demonstrated by the
weaker performance of AutoFormer and Informer compared
to Holt–Winters. This highlights the importance of model
selection and task suitability rather than assuming universal
superiority of deep learning methods.

Overall, PatchTST provides a practical and effective ap-
proach for forecasting in dynamic energy markets. Future work
may investigate its application to multivariate energy datasets,
incorporate external influencing factors such as geopolitical
events and macroeconomic indicators.
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