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Abstract—This study examines indications of the effectiveness
of a digital simulation-based learning approach in supporting stu-
dents’ understanding of queueing models using real-life data. A
quasi-experimental one-group pretest–posttest design, supported
by qualitative interview data, was conducted with 31 undergrad-
uate mathematics education students at the University of Jember.
The ExtendSim software was used to create interactive queueing
simulations that allowed students to explore parameters such as
arrival rate, service rate, and waiting time. Validity and reliability
tests were conducted using item–total (Pearson) correlations and
Cronbach’s alpha, with results indicating high validity (r > 0.5,
p < 0.05) and high internal consistency (α > 0.80). A paired t-
test showed a statistically significant increase in scores within
this sample (t = 8.89, p < 0.001). Students’ perceptions of the
simulation were highly positive, with an average Likert score
of 3.23 (very high). Qualitative interviews further indicated that
the simulations helped students visualize queue dynamics and
relate theoretical concepts to real-life contexts. There were also
indications of increased motivation, engagement, and computa-
tional thinking skills; however, these findings are limited by the
single-site sample and the one-group study design.

I. INTRODUCTION

QUEUEING models constitute an important component
of applied mathematics, used to analyze service sys-

tems across various fields such as healthcare, transportation,
industry, and public services. Efficiency in queue manage-
ment has a direct impact on user satisfaction and operational
performance [1]. In the context of mathematics education,
understanding queueing models is an essential competency
that connects theoretical mathematical structures with real-
world decision-making. However, instructional practices in
mathematics education often emphasize theoretical derivations
without providing sufficient exposure to authentic, data-driven
applications [2].

This limited practical exposure can lead to challenges in stu-
dents’ conceptual understanding, particularly when attempting
to relate abstract queueing formulas to real operational sys-
tems. As a result, a gap frequently emerges between students’
theoretical knowledge and their ability to apply queueing
concepts in practical contexts. Meanwhile, the advancement
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of digital technology has created opportunities for integrat-
ing interactive learning tools that may help bridge this gap,
including simulation-based learning environments [3], [4].

Studies indicate that simulation-based learning can support
motivation and higher-order thinking skills, particularly when
students engage with computational models in interactive envi-
ronments. Prior research also suggests that virtual laboratory
and computational thinking–based approaches may enhance
engagement and conceptual reasoning in STEM fields [5].
Digital simulations allow students to manipulate queueing
system parameters using real-world data and observe system
behavior dynamically. Through these interactions, students can
visualize queue flows, evaluate performance metrics, modify
arrival and service rates, and conduct scenario-based explo-
rations. Despite these benefits, studies focusing specifically
on the use of digital simulation for teaching queueing models
in mathematics education remain limited.

To address this gap, the present study examines indications
of the effectiveness of a digital simulation-based learning
approach in supporting students’ understanding of queueing
models using real-life data, including examples such as gas sta-
tions, shopping centers, and restaurants. A one-group pretest–
posttest design is used to identify changes in learning out-
comes within this specific cohort after the implementation of
digital simulations. Additional qualitative insights are gathered
through classroom observations and interviews to complement
the quantitative findings. The study aims to contribute to
the development of contextual, technology-enhanced learning
approaches in applied mathematics that align with the demands
of 21st-century education.

II. METHODS
A. Queueing Theory

Queueing theory is a field of applied mathematics that
examines service systems involving waiting lines. It helps
analyze how services operate and how resources can be
managed efficiently [6]. This theory is widely used to support
decision-making in sectors such as healthcare, transportation,
industry, and public services. A queueing model describes a
system based on several elements, including how customers
arrive, how they are served, the number of servers, system
capacity, and the discipline used to determine the order of
service. From these elements, key performance indicators can
be calculated, such as queue length, waiting time, and server
utilization [7].
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A queueing system generally consists of: customers (people,
items, or data requiring service), the arrival rate (λ ) as the
average number of customers arriving per unit time, queue
discipline (e.g., FIFO, LIFO, priority rules), servers (resources
providing service), the service rate (µ) as the average number
of customers served per unit time, system capacity (maximum
number of customers allowed in the system), and the number
of servers operating simultaneously [8].

Queueing systems are commonly represented using
Kendall’s notation A/B/s, where A denotes the distribution
of arrivals, B denotes the distribution of service times, and
s is the number of servers. For example, an M/M/1 model
represents exponential (Markovian) arrivals and service times
with one server, while M/M/s represents exponential arrivals
and service times with multiple servers.

B. Validity and Reliability Testing

Instrument testing was conducted to examine the quality of
the questionnaire administered in this study. Validity refers
to the degree to which an instrument accurately measures
the construct it is intended to measure [9]. Item validity
was assessed using item–total correlation, in which each item
was correlated with the total score of its respective construct
(PU, PEOU, ATU, BI). Reliability testing, on the other hand,
evaluates the consistency of an instrument when applied under
similar conditions [10]. A reliable instrument produces stable
and dependable results.
Validity Test:
H0: the item is not valid (not correlated with total score)
H1: the item is valid (correlated with total score)

The Pearson Product–Moment correlation coefficient is de-
fined as:

r =
N ∑XY − (∑X)(∑Y )√

[N ∑X2 − (∑X)2][N ∑Y 2 − (∑Y )2]
(1)

where: r = Pearson correlation coefficient, N = number of

respondents, X = item score, Y = total score.

TABLE I
INTERPRETATION OF VALIDITY COEFFICIENT

Range of r Interpretation
0.80 < r ≤ 1.00 Very High
0.60 < r ≤ 0.80 High
0.40 < r ≤ 0.60 Moderate
0.20 < r ≤ 0.40 Low

r ≤ 0.20 Very Low

Reliability was examined using Cronbach’s Alpha, which
measures internal consistency among items within each con-
struct. The Cronbach’s Alpha formula is:

α =
k

k−1

(
1− ∑σ2

i

σ2
total

)
(2)

where: α = Cronbach’s Alpha, k = number of items, σ2
i =

item variance, σ2
total = total score variance.

TABLE II
INTERPRETATION OF RELIABILITY COEFFICIENT

Range of α Interpretation
α > 0.90 Very High

0.80 < α ≤ 0.90 High
0.70 < α ≤ 0.80 Moderate
0.60 < α ≤ 0.70 Low

α ≤ 0.60 Very Low

C. Normality

Normality testing was conducted to determine whether the
data met the assumptions required for parametric analysis.
The Shapiro–Wilk test was applied to the difference scores
(posttest minus pretest), which is the appropriate assumption
check for paired-sample analysis [11]. The Shapiro–Wilk
statistic is:

W =

(
∑

n
i=1 aix(n+1−i)−aix(i)

)2

∑
n
i=1(xi − x̄)2 , (3)

where x(i) are the ordered sample values, ai are constants
derived from the expected values of order statistics of a
standard normal distribution, and x̄ is the sample mean.

D. Paired t-Test

A paired t-test was used to analyze whether there was a sta-
tistically significant difference in students’ scores before and
after the learning intervention. This test compares the mean of
the paired differences and is appropriate when the difference
scores are normally distributed [12]. The test statistic is given
by:

t =
d̄

sd/
√

n
, (4)

where d̄ is the mean of the paired differences, sd is the
standard deviation of the differences, and n is the number of
paired observations.

III. RESULTS AND DISCUSSION

A Likert-scale questionnaire was used to measure students’
perceptions of the digital simulation-based learning activity
using ExtendSim. The instrument consisted of four constructs:
Perceived Usefulness (PU), Perceived Ease of Use (PEOU),
Attitude Toward Use (ATU), and Behavioral Intention (BI).
To ensure instrument quality, validity and reliability analyses
were conducted.

TABLE III
RESULTS OF VALIDITY TESTING

Indicator Corr. Sig. Desc. Indicator Corr. Sig. Desc.
PU1 0.797 0.000 Valid ATU1 0.492 0.006 Valid
PU2 0.718 0.000 Valid ATU2 0.674 0.000 Valid
PU3 0.881 0.000 Valid ATU3 0.747 0.000 Valid

PEOU1 0.590 0.001 Valid BI1 0.782 0.000 Valid
PEOU2 0.590 0.001 Valid BI2 0.721 0.000 Valid
PEOU3 0.542 0.002 Valid BI3 0.612 0.000 Valid

Table III shows that all items across the PU, PEOU,
ATU, and BI constructs have significance values below 0.05.
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This indicates that each item is statistically valid based on
item–total correlation criteria. PU items fall within the high
to very high correlation range, PEOU and ATU items range
from moderate to high, and BI items show high correlations.
Overall, all indicators are appropriate for measuring their
respective constructs.

TABLE IV
RELIABILITY TEST RESULTS (CRONBACH’S ALPHA)

Construct Cronbach’s Alpha Description
PU 0.802 High Reliability

PEOU 0.813 High Reliability
ATU 0.801 High Reliability
BI 0.813 High Reliability

Table IV shows that all constructs have Cronbach’s Alpha
values greater than 0.80, which indicates high reliability and
suggests strong internal consistency among items within each
construct.

TABLE V
STUDENT PERCEPTIONS TOWARD EXTENDSIM SIMULATION

No. Indicator Mean Description
1 Helps me understand queueing concepts 3.29 Very High
2 Speeds up my learning process 3.16 Very High
3 Clarifies conclusions from simulations 3.19 Very High
4 Easy for beginners to use 3.13 Very High
5 Easy to understand the interface 3.19 Very High
6 Steps in simulation are easy to follow 3.29 Very High
7 I enjoy learning with digital simulation 3.16 Very High
8 Makes learning more engaging 3.29 Very High
9 Increases my motivation to learn 3.23 Very High
10 I want to use ExtendSim again 3.19 Very High
11 I will recommend this method to others 3.29 Very High
12 Open to using simulation in other courses 3.32 Very High

Average 3.23 Very High

Table V indicates that students expressed very positive
perceptions about the simulation-based learning activity. All
items received “very high” mean scores, implying that the
students felt the simulation helped them understand concepts,
accelerated learning, and made lessons more interesting. The
students also reported high motivation and enthusiasm, show-
ing a strong intention to reuse ExtendSim in future learning.

After implementing the simulation-based learning activity
using ExtendSim, the performance of the students was eval-
uated through pre–test and post–test assessments to measure
their understanding of queueing theory concepts before and
after the intervention. The data collected were descriptively
and inferentially analyzed to identify improvements in learning
outcomes and determine the statistical significance of the ob-
served changes. Descriptive statistics were used to summarize
the central tendency and variability of both pre–test and post–
test scores, while inferential analysis was conducted using a
paired t-test to examine whether the mean difference between
the two measurements was statistically significant.

The descriptive statistics presented in Table VI show a
notable improvement in the learning outcomes of the students
after implementing the simulation-based learning approach
using ExtendSim. The mean score increased from 66.45 on
the pre–test to 89.03 on the post–test, indicating a substantial
learning gain of approximately 22.6 points. The median score

TABLE VI
DESCRIPTIVE STATISTICS OF PRETEST AND POSTTEST SCORES

Statistic Pretest Posttest
N 31 31
Mean 66.45 89.03
Median 65.00 90.00
Minimum 40 65
Maximum 100 100
Standard Deviation 13.65 7.78

also increases from 65.00 to 90.00, confirming a general
upward shift in student’ performance. In addition, the standard
deviation decreased from 13.65 to 7.78, suggesting that the
post–test scores were more homogeneous and that the learning
outcomes became more consistent across participants. These
results simply show that the ExtendSim-based simulation
effectively improved students’ understanding of queueing the-
ory concepts, reduced performance variability, and enhanced
overall mastery of the material. To visualize the difference in
score distribution before and after the learning intervention,
a box plot was created to compare the spread and central
tendency of pre–test and post–test scores. This visualization
provides a clear depiction of how simulation-based learning
using ExtendSim affected student’ performance levels.

Fig. 1. Boxplot of Pretest and Posttest Score Distribution

As shown in Figure 1, the entire distribution of post–test
scores shifted upward compared to the pre–test distribution.
The median line of the post–test box is notably higher, and the
interquartile range is narrower, indicating that students’ scores
not only improved but also became more consistent. Few lower
outliers appeared in the pre–test data, meanwhile post–test
scores clustered near the upper end of the scale, showing
reduced variability and higher overall achievement. This visual
evidence supports the descriptive findings in Table VI.

Normality testing was performed before the paired t-test.
The Shapiro–Wilk test was applied to the difference scores
(post–test minus pre–test).

TABLE VII
SHAPIRO–WILK NORMALITY TEST ON DIFFERENCE SCORES

Statistic W p-value
Differences (Post–Pre) 0.9576 0.2511
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Table VII shows that the difference scores follow a normal
distribution (p = 0.2511 > 0.05), satisfying the assumption for
applying the paired t-test.

TABLE VIII
PAIRED t-TEST FOR PRETEST AND POSTTEST SCORES

t df p-value
8.9948 30 5.079×10−10

Table VIII shows a statistically significant difference be-
tween pretest and posttest scores (p < 0.001). Within the
context of this one-group sample, this indicates a statistically
detectable increase in students’ scores following the learning
activity, though causal conclusions cannot be drawn due to the
design limitations.

To complement the quantitative findings, interviews were
conducted with three students, two with high post–test scores
and one with moderate performance, to gain qualitative in-
sights into their learning experiences.

TABLE IX
SUMMARY OF STUDENT INTERVIEW RESULTS

Respondent Post-Test Level Statement Summary
M1 High The simulation helped in understand-

ing queueing flow and in observing
how input changes affected system
output.

M2 High The simulation increased interest and
supported faster understanding com-
pared to theoretical explanation alone.

M3 Moderate Initial difficulties were reduced after
repeated use, leading to clearer visu-
alization of queueing concepts.

The interview results align with the quantitative patterns.
The students described the simulation as helpful for visualiz-
ing queue dynamics and for making abstract concepts more
concrete. The student with a moderate score also expressed
positive change, noting that the practice with simulation made
the concept easier to grasp. These qualitative insights suggest
indications of increased engagement, motivation, and concep-
tual clarity within this sample.

An additional observation supporting these indications is
the increase in the proportion of students choosing queueing
theory as their mini-project topic in the Operations Research
course—from 46.53% to 64.52%. This trend may reflect
growing interest and perceived relevance of the topic following
the simulation-based activity.

IV. CONCLUSIONS

The findings of this study indicate positive patterns of
improvement in students’ understanding within the scope
of the one-group pretest–posttest design used. Validity and
reliability analyses showed that all questionnaire items met the
criteria for item–total validity and demonstrated high internal
consistency (α > 0.80). The paired t-test revealed a statistically
significant increase in scores within this sample after using the
simulation (p< 0.001). Qualitative interview results supported
the quantitative findings by indicating that students experi-
enced clearer conceptual understanding, higher motivation,

and greater interest when engaging with the simulation-based
activities.

Within the limitations of this design, these results suggest
that integrating ExtendSim as a digital learning tool may
support students’ engagement and conceptual understanding in
applied mathematics, particularly queueing theory. However,
several limitations should be noted. The one-group pretest–
posttest design does not permit strong causal inference due
to the absence of a comparison group. The sample size was
relatively small and drawn from a single institution, limiting
generalizability. In addition, the psychometric evaluation of
the questionnaire was restricted to item–total correlation and
internal consistency without further validation procedures.

Future research may employ larger and more diverse sam-
ples, include control or comparison groups, and incorporate
more comprehensive psychometric analyses to strengthen the
robustness and generalizability of the findings.
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