Climate Change and Its Effect on Temperature and Precipitation Trends: Case Study in Surabaya Using RegCM5

Authors

  • Asyam Mulayyan Dary Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember
  • Mas Agus Mardyanto Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember
  • Joni Hermana Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember
  • Chairul Imron Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.12962/j24775401.ijcsam.v11i1.4308

Keywords:

Climate change, Precipitation, RegCM, Regional climate model, Temperature

Abstract

Climate change is increasingly driving extreme weather events, yet its regional impacts remain complex. This study employs the RegCM5 model, driven by ERA5 reanalysis data, to simulate high-resolution (5 km) climate dynamics in Surabaya, Indonesia from December 2018 to November 2023. Validated against gridded observational datasets and analyzed via Earth's energy balance, the results reveal a steady rise in both top-of-atmosphere and surface energy imbalances, corresponding with record-breaking increases in maximum and minimum temperatures by approximately 1.5°C and 1°C from 2020 to 2023. While monthly precipitation patterns were inconsistent, daily observations indicate a significant increase in high-intensity precipitation events. These findings offer critical insights into evolving regional climate impacts and inform local adaptation and mitigation strategies.

References

[1] M. Fofana, J. Adounkpe, I. Larbi, J. Hounkpe, H. D. Koubodana,

A. Toure, H. Bokar, S. Q. Dotse, and A. M. Limantol, “Urban flash

flood and extreme rainfall events trend analysis in bamako, mali,”

Environmental Challenges, vol. 6, p. 100449, 1 2022.

[2] A. Ahmed, T. Al-Said, R. Madhusoodhanan, S. W. A. Naqvi, A. Sarkar,

L. Fernandes, F. Thuslim, W. Al-Zakri, and F. Al-Yamani, “Environmental

impact of a series of flash flood events on a hypersaline subtropical

system in the northwestern arabian gulf,” Marine Pollution Bulletin,

vol. 175, p. 113394, 2 2022.

[3] T. V. Ha, J. Huth, F. Bachofer, and C. Kuenzer, “A review of earth

observation-based drought studies in southeast asia,” Remote Sensing,

vol. 14, p. 3763, 8 2022.

[4] E. Commission, J. R. Centre, A. Toreti, D. Bavera, J. A. Navarro,

A. Jager, C. D. Ciollo, W. Maetens, D. Magni, D. Masante,

M. Mazzeschi, J. Spinoni, S. Niemeyer, C. Cammalleri, and A. H.

Essenfelder, Drought in Europe – August 2022 – GDO analytical report.

Publications Office of the European Union, 2022.

[5] K. P. Tripathy, S. Mukherjee, A. K. Mishra, M. E. Mann, and A. P.

Williams, “Climate change will accelerate the high-end risk of compound

drought and heatwave events,” Proceedings of the National

Academy of Sciences, vol. 120, 7 2023.

[6] A. Ingham, J. Ma, and A. Ulph, “Climate change, mitigation and adaptation

with uncertainty and learning,” Energy Policy, vol. 35, pp. 5354–

5369, 11 2007.

[7] R. Yousefpour and M. Hanewinkel, “Climate change and decisionmaking

under uncertainty,” Current Forestry Reports, vol. 2, pp. 143–

149, 6 2016.

[8] J. C. Refsgaard, K. Arnbjerg-Nielsen, M. Drews, K. Halsnæs, E. Jeppesen,

H. Madsen, A. Markandya, J. E. Olesen, J. R. Porter, and J. H.

Christensen, “The role of uncertainty in climate change adaptation strategies—

a danish water management example,” Mitigation and Adaptation

Strategies for Global Change, vol. 18, pp. 337–359, 3 2013.

[9] M. H. Dore, “Climate change and changes in global precipitation

patterns: What do we know?,” Environment International, vol. 31,

pp. 1167–1181, 10 2005.

[10] Z. Li, Q. Li, and T. Chen, “Record-breaking high-temperature outlook

for 2023: An assessment based on the china global merged temperature

(cmst) dataset,” Advances in Atmospheric Sciences, vol. 41, pp. 369–

376, 2 2024.

[11] M. Rantanen and A. Laaksonen, “The jump in global temperatures in

september 2023 is extremely unlikely due to internal climate variability

alone,” npj Climate and Atmospheric Science, vol. 7, 12 2024.

[12] A. B. Santoso, A. Prasetiyo, R. Alfian, Y. Y. Alfana, and Z. F. Zhafiri,

“Kota surabaya dalam angka 2023,” 2023.

[13] L. K. Katherina, “Dinamika pertumbuhan penduduk dan kejadian banjir

di kota: Kasus surabaya,” Jurnal Kependudukan Indonesia, vol. 12,

pp. 131–144, 12 2017.

[14] M. P. Prawira and A. Pamungkas, “Mitigasi kawasan rawan banjir rob

di kawasan pantai utara surabaya,” Jurnal Teknik POMITS, vol. 3, 2014.

[15] R. Burhani, “Luapan kali surabaya genangi sejumlah wilayah,” Antara

News, 3 2011.

[16] F. A. Maslakah, “Tren temperatur dan hujan ekstrim di juanda surabaya

tahun 1981-2013,” Jurnal Meteorologi dan Geofisika, vol. 16, 2015.

[17] S. H. Schneider and R. E. Dickinson, “Climate modeling,” Reviews of

Geophysics, vol. 12, pp. 447–493, 8 1974.

[18] G. A. Meehl and W. M. Washington, “A comparison of soil-moisture

sensitivity in two global climate models,” Journal of the Atmospheric

Sciences, vol. 45, pp. 1476–1492, 5 1988.

[19] F. Giorgi, “Simulation of regional climate using a limited area model

nested in a general circulation model,” Journal of Climate, vol. 3,

pp. 941–963, 9 1990.

[20] F. Giorgi, E. Coppola, G. Giuliani, J. M. Ciarlo‘, E. Pichelli,

R. Nogherotto, F. Raffaele, P. Malguzzi, S. Davolio, P. Stocchi, and

O. Drofa, “The fifth generation regional climate modeling system,

regcm5: Description and illustrative examples at parameterized convection

and convection-permitting resolutions,” Journal of Geophysical

Research: Atmospheres, vol. 128, 3 2023.

[21] F. Giorgi and E. Coppola, “Does the model regional bias affect the projected

regional climate change? an analysis of global model projections,”

Climatic Change, vol. 100, pp. 787–795, 6 2010.

[22] U. Handoko, A. Faqih, R. Boer, W. S. H. C. A. Pusat, P. Limnologi-

Lipi, and D. Redaksi, “Evaluasi model iklim regional regcm3 untuk

rekonstruksi data iklim historis,” 2014.

[23] T. Phan-Van, L. N. Quan, H. Thi, M. Ha, and V. Tan, “On the regional

climate simulation over southeast asia using regcm,” 2006.

[24] F. Silu´e, A. Diawara, B. Kon´e, A. Diedhiou, A. A. Kouassi, B. K.

Kouassi, F. Yoroba, A. Bamba, K. Kouadio, D. T. Ti´emoko, A. L. M.

Yapo, D. I. Kon´e, and A. M. L. Famien, “Assessment of the sensitivity of

the mean climate simulation over west africa to planetary boundary layer

parameterization using regcm5 regional climate model,” Atmosphere,

vol. 15, 3 2024.

[25] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Hor´anyi, J. Mu˜noz-

Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons,

C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati,

J. Bidlot, M. Bonavita, G. D. Chiara, P. Dahlgren, D. Dee,

M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes,

A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. H´olm, M. Janiskov´a,

S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay,

I. Rozum, F. Vamborg, S. Villaume, and J. Th´epaut, “The era5 global

reanalysis,” Quarterly Journal of the Royal Meteorological Society,

vol. 146, pp. 1999–2049, 7 2020.

[26] A. Gruber, T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo,

“Evolution of the esa cci soil moisture climate data records and their

underlying merging methodology,” Earth System Science Data, vol. 11,

pp. 717–739, 5 2019.

[27] Z. Wang, X. Gao, Z. Han, J. Wu, Y. Xu, and L. Juneng, “Assessing the

sensitivity of regcm4 to cumulus and ocean surface schemes over the

southeast asia domain of the coordinated regional climate downscaling

experiment,” Atmospheric and Oceanic Science Letters, vol. 13, pp. 71–

79, 1 2020.

[28] T. Ngo-Duc, T. Nguyen-Duy, Q. Desmet, L. Trinh-Tuan, L. Ramu,

F. Cruz, J. M. Dado, J. X. Chung, T. Phan-Van, H. Pham-Thanh,

K. Truong-Ba, F. T. Tangang, L. Juneng, J. Santisirisomboon, R. Srisawadwong,

D. Permana, U. A. Linarka, and D. Gunawan, “Performance

ranking of multiple cordex-sea sensitivity experiments: towards an

optimum choice of physical schemes for regcm over southeast asia,”

Climate Dynamics, 9 2024.

[29] S. Uwe, “Cdo user guide (2.3.0),” 10 2023.

[30] C. S. Zender, “Analysis of self-describing gridded geoscience data with

netcdf operators (nco),” Environmental Modelling Software, vol. 23,

pp. 1338–1342, 10 2008.

[31] G. Huffman, D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie,

and S. Yoo, “Nasa global precipitation measurement (gpm) integrated

multi-satellite retrievals for gpm (imerg),” Algorithm theoretical basis

document (ATBD), vol. 4, 2015.

[32] D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, “Nasa global

precipitation measurement (gpm) integrated multi-satellite retrievals for

gpm (imerg) prepared for: Global precipitation measurement (gpm)

national aeronautics and space administration (nasa),” 2014.

[33] J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch,

“Terraclimate, a high-resolution global dataset of monthly climate and

climatic water balance from 1958-2015,” Scientific Data, vol. 5, 1 2018.

[34] S. T. Ngai, F. Tangang, and L. Juneng, “Bias correction of global and

regional simulated daily precipitation and surface mean temperature over

southeast asia using quantile mapping method,” Global and Planetary

Change, vol. 149, pp. 79–90, 2 2017.

[35] X. Li, Q. Li, M. Wild, and P. Jones, “An intensification of surface earth’s

energy imbalance since the late 20th century,” Communications Earth

and Environment, vol. 5, 12 2024.

[36] J. Hiscott, M. Alexandridi, M. Muscolini, E. Tassone, E. Palermo,

M. Soultsioti, and A. Zevini, “The global impact of the coronavirus

pandemic,” Cytokine Growth Factor Reviews, vol. 53, pp. 1–9, 6 2020.

[37] D. Koh, “Covid-19 lockdowns throughout the world,” Occupational

Medicine, vol. 70, pp. 322–322, 7 2020.

[38] S. A. Bhat, O. Bashir, M. Bilal, A. Ishaq, M. U. D. Dar, R. Kumar, R. A.

Bhat, and F. Sher, “Impact of covid-related lockdowns on environmental

and climate change scenarios,” Environmental Research, vol. 195, 4

2021.

[39] R. L. Ray, V. P. Singh, S. K. Singh, B. S. Acharya, and Y. He, “What is

the impact of covid-19 pandemic on global carbon emissions?,” Science

of The Total Environment, vol. 816, p. 151503, 4 2022.

[40] J. Herby, L. Jonung, and S. H. Hanke, “Were covid-19 lockdowns worth

it? a meta-analysis,” Public Choice, 11 2024.

[41] Y. Liu, S. Ma, and R. Mu, “Pandemic experiences and the post-lockdown

economic recovery: Evidence from china,” China Economic Review,

vol. 84, p. 102125, 4 2024.

[42] A. Vorbrugg and J. Bluwstein, “Making sense of (the russian war

in) ukraine: On the politics of knowledge and expertise,” Political

Geography, vol. 98, p. 102700, 10 2022.

[43] S. Codish, A. Frenkel, M. Klein, A. Geftler, J. Dreiher, and D. Schwarzfuchs,

“October 7th 2023 attacks in israel: frontline experience of a

single tertiary center,” Intensive Care Medicine, vol. 50, pp. 308–310, 2

2024.

[44] G. Pach´e, “Israeli-palestinian conflict: towards a major logistical and

environmental crisis?,” Technium Soc. Sci. J., vol. 53, p. 252, 2024.

[45] M. Buheji and K. Al-Muhannadi, “Mitigating risks of environmental

impacts on gaza-review of precautions solutions post (2023 war),” International

Journal of Advanced Research in Engineering and Technology,

vol. 14, pp. 15–47, 2023.

[46] P. Pereira, F. Baˇsi´c, I. Bogunovic, and D. Barcelo, “Russian-ukrainian

war impacts the total environment,” Science of The Total Environment,

vol. 837, p. 155865, 9 2022.

[47] M. Solokha, P. Pereira, L. Symochko, N. Vynokurova, O. Demyanyuk,

K. Sementsova, M. Inacio, and D. Barcelo, “Russian-ukrainian war

impacts on the environment. evidence from the field on soil properties

and remote sensing,” Science of The Total Environment, vol. 902,

p. 166122, 12 2023.

[48] M. Jovanovic and M. Campbell, “Generative artificial intelligence:

Trends and prospects,” Computer, vol. 55, pp. 107–112, 10 2022.

[49] J. S. Devagiri, S. Paheding, Q. Niyaz, X. Yang, and S. Smith, “Augmented

reality and artificial intelligence in industry: Trends, tools,

and future challenges,” Expert Systems with Applications, vol. 207,

p. 118002, 11 2022.

[50] C.-C. Lee, J. Zou, and P.-F. Chen, “The impact of artificial intelligence

on the energy consumption of corporations: The role of human capital,”

Energy Economics, vol. 143, p. 108231, 3 2025.

[51] Q. Guo, Y. Peng, and K. Luo, “The impact of artificial intelligence on

energy environmental performance: Empirical evidence from cities in

china,” Energy Economics, vol. 141, p. 108136, 1 2025.

[52] A. Zhuk, “Artificial intelligence impact on the environment: Hidden ecological

costs and ethical-legal issues,” Journal of Digital Technologies

and Law, vol. 1, pp. 932–954, 12 2023.

[53] W. J. Ripple, C. Wolf, J. W. Gregg, J. Rockstr¨om, T. M. Newsome,

B. E. Law, L. Marques, T. M. Lenton, C. Xu, S. Huq, L. Simons, and

D. A. King, “The 2023 state of the climate report: Entering uncharted

territory,” BioScience, vol. 73, pp. 841–850, 12 2023.

[54] J. Andr´e, F. D’Andrea, P. Drobinski, and C. Muller, “Regimes of

precipitation change over europe and the mediterranean,” Journal of

Geophysical Research: Atmospheres, vol. 129, 8 2024.

Downloads

Published

2025-12-02

How to Cite

Dary, A. M., Mardyanto, M. A., Hermana, J., & Imron, C. (2025). Climate Change and Its Effect on Temperature and Precipitation Trends: Case Study in Surabaya Using RegCM5. (IJCSAM) International Journal of Computing Science and Applied Mathematics, 11(1), 33–37. https://doi.org/10.12962/j24775401.ijcsam.v11i1.4308

Issue

Section

Articles