Modeling and Estimating GARCH-X and Realized GARCH Using ARWM and GRG Methods

Authors

  • Didit Budi Nugroho Master Program in Data Science, Universitas Kristen Satya Wacana
  • Melina Tito Wijaya Mathematics Study Program, Universitas Kristen Satya Wacana
  • Hanna Arini Parhusip Master Program in Data Science, Universitas Kristen Satya Wacana

DOI:

https://doi.org/10.12962/j24775401.ijcsam.v11i1.4309

Keywords:

Adaptive, GARCH-X, GRG, Realized GARCH, Realized Kernel

Abstract

This study evaluates the fitting performance of GARCH-X(1,1) and RealGARCH(1,1) models, which are extensions of GARCH(1,1) model by adding the Realized Kernel measure as an exogenous component, on real data, namely the Financial Times Stock Exchange 100 and Hang Seng stock indices over the period from January 2000 to December 2017. The models assume that the return error follows Normal and Student- t distributions. The parameters of models are estimated by using the Adaptive Random Walk Metropolis (ARWM) method implemented in Matlab and the Generalized Reduced Gradient (GRG) method. The comparison of estimation results shows that the GRG method has a good ability to estimate the models because it provides the estimation results that are close to the results of the ARWM method in terms of relative error. On the basis of Akaike Information Criterion, the RealGARCH models perform better than the GARCH-X models, where the RealGARCH model with Student- t distribution provides the best fit.

References

[1] Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto, B.

and Sasongko, L. R., Empirical performance of GARCH, GARCH-M,

GJR-GARCH and log-GARCH models for returns volatility, J. Phys.

Conf. Ser., vol. 1307, no. 1, p. 012003, 2019.

[2] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity,

J. Econom., vol. 31, no. 3, pp. 307–327, 1986.

[3] Andersen, T. G. and Bollerslev, T., Answering the skeptics: Yes, standard

volatility models do provide accurate forecasts, Int. Econ. Rev., vol. 39,

no. 4, pp. 885–905, 1998.

[4] Hansen, P. R., Huang, Z. and Shek, H. H., Realized GARCH: A joint

model of returns and realized measures of volatility, J. Appl. Econom.,

vol. 26, no. 6, pp. 877–906, 2011.

[5] Engle, R., New frontiers for ARCH models, J. Appl. Econom., vol. 17,

no. 5, pp. 425–446, 2002.

[6] Nugroho D. B., Wicaksono, B. A., Larwuy, L., GARCH-X(1,1) model

allowing a non-linear function of the variance to follow an AR(1)

process, Commun. Stat. Appl. Methods, vol. 30, no. 2, pp. 163–178,

2023.

[7] Nugroho D. B., Wijaya, J., Setiawan, A., Modeling of returns volatility

through EGARCH model using high-frequency data, J. Appl. Prob. Stat.,

vol. 18, no. 2, pp. 055–073, 2023.

[8] Nugroho, D. B., Wibowo, H. and Saragih, A., Modeling daily return

volatility through GJR(1,1) model and realized volatility measure, Thail.

Stat., vol. 22, no. 1, pp. 50–62, 2024.

[9] Barndorff-Nielsen, O. E, Hansen, P., Lunde, A. and Shephard, N.,

Designing realised kernels to measure the ex-post variation of equity

prices in the presence of noise, Econometrica, vol. 76, no. 6, pp. 1481–

1536, 2008.

[10] Dutta, A., Modelling volatility: Symmetric or asymmetric GARCH

models, J. Stat. Adv. Theory Appl., vol. 12, no. 2, pp. 99–108, 2014.

[11] Gerlach, W. and Wang, C., Forecasting risk via realized GARCH,

incorporating the realized range, Quant. Financ., vol. 16, no. 4, pp. 501–

511, 2016.

[12] Olbrys, J. and Majewska, E., Asymmetry effects in volatility on the

major European Stock Markets: the EGARCH based approach, Quant.

Financ. Econ., vol. 1, no. 4, pp. 411–427, 2017.

[13] Feng L. and Shi, Y., A simulation study on the distributions of disturbances

in the GARCH model, Cogent Econ. Financ., vol. 5, no. 1, p.

1355503, 2017.

[14] Abadie, J., Application of the GRG algorithm to optimal control

problems, p. 181 in , Integer and Nonlinear Programming, Abadie, J.,

ed., North Holland, Amsterdam, 1970.

[15] Lasdon, L. S., Fox, R. L. and M. W. Ratner, Nonlinear optimization using

the generalized reduced gradient method, Recherche Operationnelle,

vol. 8, no. 3, pp. 73–103, 1974.

[16] Nawaz, M. N., Ali, A. S., Jaffar, S. T. A., Jafri, T. H., Oh, T. -M.,

Abdallah, M., Karam, S. and Azab, M., Cost-based optimization of

isolated footing in cohesive soils using generalized reduced gradient

method, Build., vol. 12, p. 1646, 2022.

[17] Elci, Alper, Calibration of groundwater vulnerability mapping using the

generalized reduced gradient method, J. Contam. Hydrol., vol. 207, pp.

39–49, 2017.

[18] Sakhaei, Z., Azin, R. and Osfouri, S., Assessment of

empirical/theoretical relative permeability correlations for gasoil/

condensate systems, 1st Biennial Conference Persian Gulf

Oil, Gas and Petrochemistry, Iran, 2016. Retrieved from

https://www.researchgate.net/publication/304019498.

[19] Mantell, J. B. and Lasdon, L. S., A GRG algorithm for econometric control

problems, p. 581–597 in , Annals of Economic and Social Measurement,

vol. 6, no. 5, National Bureau of Economic Research, Inc, 1977.

Retrieved from https://EconPapers.repec.org/RePEc:nbr:nberch:10545.

[20] Nugroho, D. B., Susanto, B., Prasetia, K. N. P. and Rorimpandey, R.,

Modeling of returns volatility using GARCH(1,1) model under Tukey

transformations, J. Akuntansi Keuangan, vol. 21, no. 1, pp. 12–20, 2019.

[21] Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto,

B. and Sasongko, L. R., GRG non-linear and ARWM methods for

estimating the GARCH-M, GJR, and log-GARCH Models, J. Teori

Aplikasi Matematika, vol. 6, no. 2, pp. 448–460, 2022.

[22] Nugroho, D. B., Mahatma, T. and Pratomo, Y., GARCH models under

power transformed returns: Empirical evidence from international stock

indices, Austrian J. Stat., vol. 50, no. 4, 1–18, 2021.

[23] Le, H., Pham, U., Nguyen, P. and Pham, T. B., Improvement on Monte

Carlo estimation of HPD intervals, Commun. Stat. Simul. Comput., vol.

49, no. 8, pp. 2164–2180, 2020.

[24] Kubara, M. and Kopczewska, K., Akaike information criterion in choosing

the optimal k-nearest neighbours of the spatial weight matrix, Spat.

Econ. Anal., vol. 19, no. 1, pp. 73–91, 2023.

[25] Hansen, P. H. and Lunde A., A forecast comparison of volatility models:

does anything beat a GARCH(1,1)? J. Appl. Econom., vol. 20, no. 7,

pp. 873–889, 2005.

[26] Jafari, G. R., Bahraminasab, A. and Norouzzadeh P., Why does the

standard GARCH(1,1) model work well? Int. J. Modern Phys. C, vol.

18, no. 07, pp. 1223–1230, 2007.

[27] Kim, N., A Jarque-Bera type test for multivariate normality based on

second-power skewness and kurtosis, Commun. Stat. Appl. Methods,

vol. 28, no. 5, pp. 463–475, 2021.

[28] Ardia, D. and Hoogerheide, L. F., Bayesian estimation of the

GARCH(1,1) model with Student-t innovations, R J., vol. 2, no. 2, pp.

41–47, 2010.

[29] Deschamps, P. J., A flexible prior distribution for Markov switching

autoregressions with Student-t errors, J. Econom., vol. 133, no. 1, pp.

153–190, 2006.

Downloads

Published

2025-12-02

How to Cite

Nugroho, D. B., Wijaya, M. T., & Parhusip, H. A. (2025). Modeling and Estimating GARCH-X and Realized GARCH Using ARWM and GRG Methods. (IJCSAM) International Journal of Computing Science and Applied Mathematics, 11(1), 14–20. https://doi.org/10.12962/j24775401.ijcsam.v11i1.4309

Issue

Section

Articles