Truncated Gamma-Truncated Lomax Distribution in Modelling Data Claims

Authors

  • Irmatul Hasanah Universitas Islam Negeri Sultan Maulana Hasanuddin Banten
  • Wahri Irawan Universitas Islam Negeri Sultan Maulana Hasanuddin Banten
  • Ikin Ainul Yakin Universitas Islam Negeri Sultan Maulana Hasanuddin Banten

Keywords:

Severity Distribution, Heavy Tail Distribution, Truncated Distribution, Modelling Claims

Abstract

One of the methods to analyze the risk of loss on insurance companies based on the historical data on claim payments is modelling the data into severity distribution. This research deals with severity distribution by connecting two distribution Truncated Gamma and Truncated Lomax in modelling claim payments. The Kolmogorov-Smirnov test is used to test the fit of model. The result shows that Truncated Gamma-Truncated Lomax distribution is the best model to analyze the risk of loss based on data claim payments. The AIC value of 1533,915 and the BIC value of 1550,132.

Downloads

Download data is not yet available.

References

G. E. Rejda and M. J. McNamara, Principles of Risk Management and Insurance. Pearson Education Inc., 2018.

S. Klugman A., H. Panjer H., and G. Willmot E., Loss Models: Nonlife Actuarial Models, Fourth Edi. Canada: Wiley, 2012.

J. Zhao, Z. Ahmad, E. Mahmoudi, E. H. Hafez, and M. M. M. El- Din, “A new class of heavytailed distributions: Modeling and simulating actuarial measures,” Complexity, vol. 2021, no. iii, 2021, doi: 10.1155/2021/5580228.

J. Garrido, C. Genest, and J. Schulz, “Generalized linear models for dependent frequency and severity of insurance claims,” Insur. Math. Econ., vol. 70, pp. 205–215, 2016, doi: 10.1016/j.insmatheco.2016.06.006.

C. Laudag´e, S. Desmettre, and J. Wenzel, “Severity modeling of extreme insurance claims for tariffication,” Insur. Math. Econ., vol. 88, pp. 77–92, 2019, doi: 10.1016/j.insmatheco.2019.06.002.

R. Diandarma, D. Lestari, S. Mardiyati, R. A. Kafi, S. Devila, and L. Safitri, “Truncated gamma-truncated Weibull distribution for modeling claim severity,” AIP Conf. Proc., vol. 2374, no. Iscpms, pp. 1–9, 2021, doi: 10.1063/5.0059259.

Downloads

Published

2025-08-15

How to Cite

Hasanah, I. ., Irawan , W. ., & Yakin, . I. A. . (2025). Truncated Gamma-Truncated Lomax Distribution in Modelling Data Claims. (IJCSAM) nternational ournal of omputing cience and pplied athematics, 10(2), 78–80. etrieved from https://journal.its.ac.id/index.php/ijcsam/article/view/4574

Issue

Section

Articles