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Abstract— Hybrid propulsion systems, integrating internal combustion engines with electric motors, represent a significant
advancement in maritime technology, offering improved efficiency and reduced emissions. However, their complexity
introduces challenges in maintenance and reliability. Traditional maintenance strategies are often inadequate for these
dynamic systems, leading to unplanned downtime and increased costs. This research develops and validates a predictive
maintenance framework specifically designed for hybrid propulsion systems in maritime applications, integrating vibration,
thermal, and electrical data to enhance system reliability and reduce maintenance costs. The study employs advanced signal
processing techniques including Root Mean Square (RMS), Kurtosis, Fourier’s Law, and Wavelet Transforms to extract
degradation features from sensor data. Multi-sensor fusion is achieved using Dempster-Shafer evidence theory and
weighted entropy-based models to resolve data conflicts and provide a holistic health assessment. Failure prediction and
Remaining Useful Life (RUL) estimation are conducted using Proportional Hazards Models (PHM) and Weibull
distributions. The framework was validated through case studies on two hybrid-powered vessels: a 2 MW coastal cargo ship
(Ship A) and a 5 MW offshore support vessel (Ship B). Results showed that Ship A achieved an MTBF of 1,440 hours and
99.45% availability, while Ship B, operating under harsher conditions, recorded an MTBF of 864 hours and 99.08%
availability. The PHM-based RUL estimation achieved a Mean Absolute Error of 12.5 hours (15.6% error), demonstrating
high predictive accuracy. Economic analysis indicated a potential 40% reduction in annual maintenance costs compared to
traditional methods.

Keywords— Dempster-Shafer; Proportional Hazards Models (PHM); Multi-Sensor Data Fusion; Remaining Useful Life (RUL);
Maritime Reliability
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I. INTRODUCTION propulsion systems, which operate under dynamic
conditions and require a more proactive approach to
maintenance [11].

Predictive maintenance has emerged as a promising
alternative, focusing on the early detection of potential
failures through continuous monitoring and analysis of
system parameters. By identifying signs of degradation
before they lead to catastrophic failures, predictive
maintenance can significantly reduce downtime, lower
maintenance costs, and extend the lifespan of critical

components. This approach is particularly relevant for

The hybrid propulsion system represents a significant

advancement in modern engineering, combining the
strengths of internal combustion engines (ICEs) and
electric motors to achieve improved efficiency, reduced
emissions, and enhanced performance [2]. These systems
are increasingly being adopted across various industries,
including automotive, maritime, and aerospace, due to
their ability to address growing environmental concerns

and stringent regulatory requirements. However, the
integration of multiple power sources and complex
components in hybrid propulsion systems introduces new
challenges in terms of maintenance and reliability [13].
Traditional maintenance strategies, such as reactive
and preventive maintenance, have been widely used in
conventional propulsion systems. Reactive maintenance
involves addressing failures after they occur, often
leading to unplanned downtime and increased repair
costs. Preventive maintenance, on the other hand, relies
on scheduled inspections and replacements, which can be
inefficient and costly due to the replacement of
components that may still have useful life remaining.
These approaches are not well-suited for hybrid
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hybrid propulsion systems, where the interplay between
mechanical, electrical, and thermal components
necessitates a comprehensive monitoring strategy.

Figure 1 AKA’s Marine Hybrid Propulsion System
has captured the attention of the marine industry with
significant economic and environmental savings. The
AKA'’s hybrid system is comprised of a diesel engine
and an electric motor that independently or
simultaneously drive a propulsion shaft which is
applicable to a wide range of vessels, the hybrid system
presents a clean and simple solution that is customizable
to a vessel’s power and propulsion requirements. The
concept of predictive maintenance is not new and has
been successfully applied in various industries, including
manufacturing, energy, and transportation. For instance,
in the manufacturing sector, predictive maintenance has
been used to monitor the health of industrial machinery,
leading to significant improvements in operational
efficiency and cost savings.
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Figure 1.AKA’s Marine Hybrid Propulsion System

Similarly, in the energy sector, predictive
maintenance has been employed to monitor wind
turbines and solar panels, ensuring their reliable
operation in harsh environments [16].

Despite these successes, the application of
predictive maintenance in hybrid propulsion systems is
still in its early stages. One of the key challenges is the
integration of multiple data sources, such as vibration,
thermal, and electrical data, to provide a holistic view of
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system health. While some studies have explored the use
of individual data sources for predictive maintenance,
there is limited research on combining these data sources
to monitor the overall health of hybrid propulsion
systems [18].

I1. METHOD
Served as a critical computational tool in this study,
enabling advanced signal processing, statistical

modeling, and multi-sensor data fusion. Its robust suite
of toolboxes, including the Signal  Processing
Toolbox, Wavelet Toolbox, and Statistics and Machine
Learning Toolbox, will streamline the analysis of
vibration, thermal, and electrical data from hybrid-
powered ships.

Two hybrid-powered ships will be monitored:

Ship A: Coastal cargo vessel with a 2 MW hybrid
system.

Ship B: Offshore support vessel with a 5 MW hybrid
system

TABLE 1.
TWO HYBRID-POWERED SHIPS WILL BE MONITORED
Features Ship A Ship B
Hybrid System Power 2MW 5MW
Vessel Type Coastal caro (freight transport near costlines) Offline support (supply crew, maintenance

Typical Size (Length)
Typical Deadweight Tonnage

80-100 meters
3000 — 10000 DWT

for offshore Operations)

600-100-meters
Support offshore plateforms

Primary Role Transport goods along Coastal routes Moderate
Operational Range Short to medium Medium to long
Crew Size 10-30 20-50

Typical Speed 10-50 knots 12-18
Cost (Estimated) Lowe Cost Higher Cost

2.2 Mathematical Models

The foundational equations established in this
section provide critical reliability benchmarks such as
Failure Rate, Mean Time to Repair, and Mean Time
Between Failures, to quantify the performance of hybrid-
powered ships. By tailoring these universal metrics to
maritime operations, the framework creates a baseline to
assess system health and measure the impact of
predictive maintenance on reducing downtime and
enhancing operational readiness.

2.2.1 Primary Maintenance Metrics

These equations establish baseline metrics for
evaluating system reliability and maintenance efficiency.
Failure Rate (FR)
Quantifies how frequently failures occur in hybrid

propulsion systems.
F. — Number of failure
2 =

Total operational time (1)

Where FR = Failures per hour (1/h).
The mean time to repair refers to the extend the system
can react to a challenge and return to -operating state,

that is it measures maintenance efficiency.
MTTR = Y. Downtime of Repairs

2

Number of Repairs

Where MTTR =Average repair time (hours).
The mean time between failures (MTBF) is the

foundational evaluation that Indicates system reliability.

Total Operational Time 1
MTBF = P =— ©)

Number of Failure

Where MTBF= Average operational time between

failures (hours).

Availability
Availability is the fraction of time the system is
operational, it evaluates overall system readiness.

Availability = % @

2.2.2 Signal Processing and Feature Extraction

This research employs advanced signal processing
techniques and specific equations to transform raw
vibration, thermal, and electrical sensor data into
actionable insights. These methods are designed to
extract critical features that reveal subtle fault signatures
hidden within complex operational noise, enabling
effective condition monitoring.
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Root Mean Square (Vibration)
Detects imbalances in rotating machinery (e.g.,
diesel engines).

RMS = /; fy x*(D)dt (5)

Where x(t) = Vibration signal (m/s?).

T = Sampling period (s).
Kurtosis (Vibration)

Identifies transient impacts (e.g., bearing defects).
; %Z?I:l(xi—f)q.

Kurtosis = "——— (6)
x: Mean vibration amplitude.

o Standard deviation.

Fourier’s Law (Thermal)
Models heat dissipation in engine blocks and
battery systems.
q=—kVT @)
Where q = Heat flux (W/m?).
K = Thermal conductivity (W/m-K).
VT = Temperature gradient (K/m).

Wavelet Transform (Electrical)

The continuous wavelet transform provides a
powerful tool for analyzing non-stationary vibration
signals:

W(a,b) = \ia I xw (%") dt 8)
Where v = Mother wavelet function.
a = Scale parameter.
b = Translation parameter.

2.2.3 Multi-Sensor Data Fusion
Equations to integrate heterogeneous data sources.
Dempster-Shafer Evidence Theory
Combines conflicting sensor data (e.g., vibration vs.
thermal).

YBnc=ami(B)m;(C)
Mi2(A) = o B (@ ©)
Where m;m, are Probability mass functions from two
Sensors.
A, B, C = Hypotheses (e.g., "bearing failure").

Weighted Fusion Model:

Prioritizes reliable sensors during fusion.
Fused Output =w, -V +w;-T +w,-E (10
Where Wy, We, W' Entropy-based weights
(wytwitw,=1).
V, T, E = Normalized vibration, thermal, and electrical
features.

2.2.4 Failure Prediction Models
Equations to predict failures and
remaining useful life (RUL).

estimate

Proportional Hazards Model (PHM):

Predicts failure risks using sensor data.
h(t,z) = ho(t)exp (B1Z, + B2Z; + BaZ3) (11)
where h(t, z) = Hazard rate at time t.
ho(t) = Baseline hazard (historical failure data).
Where Z,,Z,,Z; =Covariates (RMS vibration,
temperature gradient, current harmonics).
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Weibull Distribution (Baseline Hazard)

The Weibull distribution characterizes failure rates
over time, allowing for predictive maintenance
scheduling. Models time-dependent failure patterns in
diesel engines.

ho(®) =2 (0)F (12)

S= Shape parameter (unitless).

n=Scale parameter (hours).

RUL Estimation
Estimates time until failure for critic
_In (s())At
RUL = In (S(t+A)
S(t)= Survival probability at time t.
At= Prediction interval.

(13)

Mean Absolute Error (MAE):
Quantifies RUL estimation errors.

1
MAE = Ez?rzl |RULpredicted — RULpactuar | (14)
I11. RESULTS AND DISCUSSION

This section presents the results obtained from the
application of the predictive maintenance framework to
the hybrid propulsion systems of a maritime vessels MV
PUGET HYBRID

Calculation of Reliability Metrics

The reliability metrics were computed using
Equations (1) through (4). The calculations proceed as
follows:
Failure Rate (FR) calculation:

Number of failures 3

= =6.94 X 107 fail h
Total operational time 4320 failure/hour

Mean Time to Repair (MTTR) calculation
MTTR = total downtime 24

——————— = — = Bhours

number of repairs 4
Mean Time Between Failures (MTBF) calculation
total operational time 4320

MTBE = Number of failures =~ 3 = 1440 hours
Availability calculation:

MTBF 1440
Availability = = 0.9945 ~ 99.45%

MTBF + MTTR _ 1440 + 8

3.2 Vibration Analysis

Using engine load as a vibration proxy, Root Mean
Square (RMS) and Kurtosis values were calculated for
both the overall signal and its rate-of-change (A) from a
100-sample window centered at the 4000-hour
operational mark.

The negative kurtosis values (-1.08 for level, -0.42
for derivative) indicate a platykurtic distribution,
suggesting that the engine load data exhibits lighter tails
and a flatter peak compared to a normal distribution.
This pattern typically indicates stable operation with
fewer extreme fluctuations. The RMS value of 37.44 for
the level data represents the root mean square of engine
load percentage, providing a measure of the average
power demand on the propulsion system.
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TABLE 3.1
VIBRATION FEATURE ANALYSIS AT 4000 HOURS

Feature Type RMS Value Kurtosis Value

Interpretation

Level 37.44 -1.08

A (Derivative) 7.62 -0.42

Stable operation with platykurtic distribution

Moderate variation in engine load

The derivative analysis reveals how quickly the
engine load changes over time. The RMS value of 7.62
for the derivative indicates moderate variation in engine

load changes, while the kurtosis value of -0.42 suggests
that these changes occur relatively smoothly without
abrupt transitions.

Engine Load Percentage Over Time (Centered at 4000 Hours)

50 n
Mean: 37.44%

40 |f | 5t Dev: 782%
Kurtosis: 2.97

Engine Load (%)

3996 3997 3098 3099

Frequency

15 20 25 30

B 0
Engine Load (%)

"
4000 4001 4002 4003 40
Operational Time (Hours)

Distribution of Engine Load Values
'

Figure 3.1. Engine Load Analysis at 4000 Hours

Figure 3.1: Engine Load Analysis at 4000 Hours shows
the time-domain signal and distribution of engine load
values, illustrating the stable operational pattern with
moderate fluctuations.

3.4 Thermal Analysis

Thermal analysis was performed using the ambient
temperature and genset power data to compute thermal
gradients and assess heat dissipation characteristics.
Fourier's Law (Equation 7) was applied to model heat
flux in the engine block and battery systems.

TABLE 3.3.
THERMAL FEATURE ANALYSIS AT 4000 HOURS

Parameter Value Interpretation

Mean dT/dt -0.224°C/h Slight cooling trend overall
Max dT/dt 94.8°C/h Occasional rapid heating events
Min dT/dt -90.0°C/h Occasional rapid cooling events
Heat Flux 11.2 W/m? Moderate heat dissipation

Corr(ambient, genset) 0.043

Corr(ambient, battery) -0.087

Very weak positive correlation

Very weak negative correlation

The thermal analysis reveals a generally stable
thermal environment with occasional rapid temperature
changes, likely corresponding to sudden load variations
or environmental factors. The very weak correlations

between ambient temperature and power parameters
suggest that the system's thermal behavior is largely
decoupled from external conditions, indicating effective
thermal management.
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Temperature Change Rate Over Time (Around 4000 Hours)
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Figure 3.2. Thermal Analysis at 4000 Hours
Figure 3.2:  Thermal Analysis at 4000 3.5 Electrical Analysis

Hours displays the temperature change rate over time
and the relationship between ambient temperature and
genset power, illustrating the weak correlation and
generally stable thermal behavior.

Electrical analysis focused on the battery system,
particularly the discharge power, using wavelet
transforms to identify harmonics and transients that
might indicate potential issues.

TABLE 3.4.
ELECTRICAL FEATURE ANALYSIS AT 4000 HOURS

Feature Type RMS Value (kW) Kurtosis Value Interpretation
Level 269.17 -1.44 Stable discharge with platykurtic distribution
A(Derivative) 67.93 1.02 Presence of transient spikes during discharge

The electrical analysis shows generally stable
battery operation with a platykurtic distribution of
discharge power (kurtosis = -1.44). However, the
positive kurtosis value for the derivative (1.02) indicates

Electrical Analysi:

the presence of transient spikes during discharge events,
which may suggest irregular load demands or potential
battery health issues that warrant further monitoring
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Figure 3.3. Electrical Analysis at 4000 Hours

Figure 3.3: Electrical Analysis at 4000
Hours presents the battery discharge power over time
and its continuous wavelet transform, showing the time-

frequency characteristics of the electrical signals and
highlighting any transient events or harmonic patterns.
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3.5 Integrated Feature Analysis

The extracted features from all three domains were
analyzed collectively to provide a comprehensive view
of system health at the 4000-hour mark. The integration
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of these diverse data sources allows for a more robust
assessment than any single domain could provide
independently.

TABLE 3.5
INTEGRATED FEATURE SUMMARY AT 4000 HOURS

Domain Key Feature Value Health Indicator

Vibration RMS (A) 7.62 Moderate variation, monitor trend
Vibration Kurtosis (level) -1.08 Stable operation

Thermal Mean dT/dt -0.224°C/h Slight cooling trend

Thermal Max dT/dt 94.8°C/h Monitor for rapid changes
Electrical RMS (level) 269.17 kW Normal discharge level

Electrical Kurtosis (A) 1.02 Watch for transient spikes

The integrated analysis reveals generally healthy
system operation at 4000 hours, with no immediate

Raw Feature Values

critical issues detected. However, several parameters
warrant continued monitoring.

at 4000 Hours

28017

Feature Values with Normal Ranges

Figure 3.4. Radar Plot of Integrated Features

Figure 3.4: Based on the integrated radar plot
analysis at the 4000-hour mark, the hybrid propulsion
system is operating within expected parameters overall,
though the multi-domain feature extraction has identified
specific areas for monitoring. Vibration analysis
indicates stable operation with moderate load variations,
while thermal profiling reveals effective management
despite occasional rapid temperature changes that could
accelerate fatigue. Electrically, the system is generally
healthy but shows transient spikes during discharge that
require attention. The key insight is that this integrated,
multi-domain  approach provides a far more
comprehensive health assessment than any single
analysis could, which is crucial for understanding the
complex interactions within the hybrid system.

3.6 Multi-Sensor Data Fusion
The integration of multiple data sources through
sensor fusion techniques is essential for achieving a

3.7 Dempster-Shafer Evidence Theory Application

The Dempster-Shafer theory was applied to
combine evidence from the three sensors regarding the
hypothesis of "impending bearing failure." The
probability mass functions were assigned based on
historical failure data and expert knowledge:

TABLE 3.6
PROBABILITY MASS ASSIGNMENTS
m(Bearin m .
Sensor F(ailure)g (No Failure) m(Uncertain)
Vibration  0.65 0.20 0.15
Thermal 0.55 0.30 0.15
Electrical 0.60 0.25 0.15

3.8 Weighted Fusion Model Application

The weighted fusion model was applied using
entropy-based weights calculated from the sensor data
uncertainty

comprehensive understanding of system health in hybrid

propulsion systems. This section presents the application
of Dempster-Shafer evidence theory and weighted fusion

TABLE 3.7
WEIGHTED FUSION
Sensor Entropy Value Weight (w)
Vibration 0.85 0.35
Thermal 0.92 0.30
Electrical 0.78 0.35

models to combine vibration, thermal, and electrical data
from the MV Puget Hybrid vessel at a system
operational time of 4000 hours.
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Weighted Sensor Fusion

FIGURE3.5. MULTI-SENSOR FUSION

Figure 3.5: The multi-sensor fusion analysis
successfully identified clear signs of bearing degradation
at the critical 4000-hour operational mark, demonstrating
the framework's practical value. The D-empster-Shafer
evidence theory yielded a high confidence level (86.7%)
for impending bearing failure with very low uncertainty,
indicating strong consensus among the sensors.
Complementing this, the weighted fusion model
produced a degradation index of 0.548, signifying a
moderate level of deterioration primarily driven by the
most reliable sensor, vibration data. Together, these
complementary approaches provide a robust and
comprehensive health assessment that reduces false
positives and offers maintenance planners both a
probabilistic failure likelihood and a continuous
degradation index for informed decision-making.

3.9 Failure Prediction and RUL Estimation

The failure prediction and Remaining Useful Life
(RUL) estimation form the core of the predictive
maintenance framework, enabling proactive intervention
before catastrophic failures occur. This analysis extends
the original timeframe from the limited operational data

to a comprehensive 6-month period, providing a more
realistic assessment of the predictive maintenance
framework's capabilities in maritime applications.

TABLE 3.8
BASELINE HAZARD FUNCTION VALUES
Time (hours)  ho(t) (failures/hour)

500 4.60 x 104
1000 9.86 x 10
1500 1.54 x 1073
2000 2.10 x 1073
2500 2.68 x 1073
3000 328 x1073
3500 3.89 x 1073
4000 4.52 x 1073

3.9.1 Sensor Data Analysis and Covariate Calculation

The sensor data from the 4000hour operational
period was analyzed to establish normal operating ranges
and identify anomaly patterns. The RMS and kurtosis
values from the signal analysis were used to quantify
signal characteristics

TABLE 3.9.
SENSOR SIGNAL CHARACTERISTICS

Sensor Parameter RMS (Level) Kurtosis (Level) RMS (A) Kurtosis (A)
Engine Load (%) 37.44 -1.077 7.624 -0.416

Genset Power (KW) 1537.36 -1.120 179.49 0.383

Battery Power (kW) 269.17 -1.439 67.93 1.018
Fuel Rate (kg/h) 339.49 -1.136 40.02 0.197

The negative kurtosis values indicate platykurtic
distributions (light-tailed), suggesting generally stable
operation with few outliers. The battery power shows
positive kurtosis in its derivative, indicating potential
transient spikes during discharge events.

3.9.2 Proportional Hazards Model Implementation

The PHM was implemented using Equation (11)
with three covariates:

Z:: Normalized vibration (engine load)

Z>: Normalized thermal gradient (fuel rate derivative)

Zs: Normalized electrical harmonics (battery power
derivative)

The coefficients were estimated from historical data:
f1=03,62=04,53=05



International Journal of Marine Engineering Innovation and Research, Vol. 10(4), Dec. 2025. 1378-1387

(pISSN: 2541-5972, eISSN: 2548-1479)

1385

TABLE 3.10
HAZARD RATE CALCULATIONS AT DIFFERENT TIME POINTS

Time (hour) ho(t) Sensor State h(t,2) Risk Level
1000 9.86x10™ Normal 1.12x1072 Low
1500 1.54x1072 Warning 3.20x1073 Moderate
2000 2.10x10°3 Alert 6.72x1073 High
2500 2.68x107? Critical 1.12x1072 Severe

TABLE 3.11.

RUL ESTIMATION RESULTS

Current Time (hours) Survival Probability RUL (hours) Confidence Interval
1000 0.92 320 +45 hours
1500 0.80 155 +28 hours
2000 0.65 85 +18 hours
2500 0.45 42 +12 hours
3.9.3 Remaining Useful Life Estimation ; Survival Function; (4000 hours)
The RUL was estimated using the survival function | E
and Equation (3.13). The survival probability S(t) was _ost '3
calculated as. @ '3
t g i
S(t) = exp (f h(u, z)du) § 08 :
0 °
o )
w0471 1
i 103 Baseline and Actual Hazard Rates (4000 hours) % :
Baseline ho(!) 8 0.2 :
= =i Actual h(t.2) ’ :
‘50’, 25 0 L L : L L L L
g 0 500 1000 1500 2000 2500 3000 3500 4000
E 2r Time (hours)
§ 15} Figure 3.7. Survival Function
§ b Figure 3.7: Survival Function displays the
05 probability of survival over time, with the current time
0 : and failure threshold indicated. The rapid decline in
0 500 1000 1500 2000 2500 3000 3500 4000

Time (hours)

Figure 3.6 Hazard Rate Analysis

Figure 3.6: Hazard Rate Analysis shows the
baseline hazard function (blue) and the actual hazard rate
(red) modulated by sensor readings. The sensor effect
demonstrates how operational conditions influence the
failure risk.

survival probability after 2000 hours reflects the

increasing failure risk.

o0 RUL Estimation at Different Time Points

8 & 8
S S S
T

RUL (hours)
@
o

100 |

1000 1500 2000 2500
Current Time (hours)

Figure 3.8. RUL Estimation
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Figure 3.8: RUL Estimation presents the estimated
remaining useful life at different time points, showing
the natural decrease in RUL as operational time
increases.

RUL with Confidence Intervals

100 I
o]
o g
0
1000 1500 2000 2500

Current Time (hours)

Figure 3.9. RUL Confidence Intervals

Figure 3.9: RUL Confidence Intervals illustrates the
uncertainty in RUL estimates, with wider intervals at
earlier time points reflecting greater uncertainty in long-
term predictions. The results demonstrate that the
proportional hazards model provides a robust framework
for failure prediction and RUL estimation in maritime
hybrid propulsion systems, effectively integrating sensor
data with historical failure patterns. The model
accurately reflects wear-out over time and shows how
operational conditions, like high vibration or thermal
gradients, sharply increase the hazard rate. With a mean
absolute error of 12.5 hours (15.6%) for RUL, the
accuracy is sufficient for practical maintenance planning,
and confidence intervals appropriately narrow as more
data is collected. However, limitations were noted,
including missed failures during rapid operational
transitions and false alarms during extreme conditions,
suggesting a need for incorporating contextual data and
more sophisticated pattern recognition to improve
accuracy during these transient states.

1V. CONCLUSION

This research has successfully developed and
validated a comprehensive predictive maintenance
framework for hybrid propulsion systems in maritime
applications. The framework integrates vibration,
thermal, and electrical data through advanced signal
processing techniques and multi- sensor fusion methods,
providing a holistic approach to system health
monitoring and failure prediction.

The study demonstrated that hybrid propulsion
systems exhibit distinct reliability characteristics based
on their operational profiles. Ship A, operating as a
coastal cargo vessel, showed superior reliability metrics
with a Mean Time Between Failures (MTBF) of 1440
hours and system availability of 99.45%. The application
of advanced signal processing techniques, including
Root Mean Square analysis, Kurtosis measurement, and
Wavelet Transform analysis, effectively extracted
meaningful features from raw sensor data. The
integration of these features through Dempster-Shafer
evidence theory and weighted fusion models provided a
robust mechanism for combining heterogeneous data
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sources. The fusion results showed a high confidence
level (86.7%) in predicting bearing failures, with
significantly reduced uncertainty compared to single-
sensor approaches.

The Proportional Hazards Model implementation
successfully incorporated sensor data into failure
prediction, demonstrating how operational conditions
significantly influence failure risk. The model achieved a
Mean Absolute Error of 12.5 hours in Remaining Useful
Life estimation, representing a 15.6% error relative to
the average RUL. This level of accuracy provides
sufficient lead time for planning maintenance
interventions while minimizing unnecessary downtime.
The economic analysis revealed substantial benefits
from implementing the predictive maintenance
framework. The comparative cost assessment showed
that predictive maintenance strategies could reduce
annual maintenance costs by approximately 40%
compared to traditional corrective approaches. For vessel
operators, this translates to significant operational
savings and improved vessel availability.

The research successfully addressed the
identified knowledge gap in the integration of multiple
data sources for predictive maintenance in hybrid
propulsion systems. By combining vibration, thermal,
and electrical data, the framework provides a more
comprehensive health assessment than previously
achieved in literature, where studies typically focused on
individual components or single data sources.
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