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Abstract⎯ Hybrid propulsion systems, integrating internal combustion engines with electric motors, represent a significant 

advancement in maritime technology, offering improved efficiency and reduced emissions. However, their complexity 

introduces challenges in maintenance and reliability. Traditional maintenance strategies are often inadequate for these 

dynamic systems, leading to unplanned downtime and increased costs. This research develops and validates a predictive 

maintenance framework specifically designed for hybrid propulsion systems in maritime applications, integrating vibration, 

thermal, and electrical data to enhance system reliability and reduce maintenance costs. The study employs advanced signal 

processing techniques including Root Mean Square (RMS), Kurtosis, Fourier’s Law, and Wavelet Transforms to extract 

degradation features from sensor data. Multi-sensor fusion is achieved using Dempster-Shafer evidence theory and 

weighted entropy-based models to resolve data conflicts and provide a holistic health assessment. Failure prediction and 

Remaining Useful Life (RUL) estimation are conducted using Proportional Hazards Models (PHM) and Weibull 

distributions. The framework was validated through case studies on two hybrid-powered vessels: a 2 MW coastal cargo ship 

(Ship A) and a 5 MW offshore support vessel (Ship B). Results showed that Ship A achieved an MTBF of 1,440 hours and 

99.45% availability, while Ship B, operating under harsher conditions, recorded an MTBF of 864 hours and 99.08% 

availability. The PHM-based RUL estimation achieved a Mean Absolute Error of 12.5 hours (15.6% error), demonstrating 

high predictive accuracy. Economic analysis indicated a potential 40% reduction in annual maintenance costs compared to 

traditional methods. 
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I. INTRODUCTION1 

The hybrid propulsion system represents a significant 

advancement in modern engineering, combining the 

strengths of internal combustion engines (ICEs) and 

electric motors to achieve improved efficiency, reduced 

emissions, and enhanced performance [2]. These systems 

are increasingly being adopted across various industries, 

including automotive, maritime, and aerospace, due to 

their ability to address growing environmental concerns 

and stringent regulatory requirements. However, the 

integration of multiple power sources and complex 

components in hybrid propulsion systems introduces new 

challenges in terms of maintenance and reliability [13]. 

Traditional maintenance strategies, such as reactive 

and preventive maintenance, have been widely used in 

conventional propulsion systems. Reactive maintenance 

involves addressing failures after they occur, often 

leading to unplanned downtime and increased repair 

costs. Preventive maintenance, on the other hand, relies 

on scheduled inspections and replacements, which can be 

inefficient and costly due to the replacement of 

components that may still have useful life remaining. 

These approaches are not well-suited for hybrid 
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propulsion systems, which operate under dynamic 

conditions and require a more proactive approach to 

maintenance [11]. 

Predictive maintenance has emerged as a promising 

alternative, focusing on the early detection of potential 

failures through continuous monitoring and analysis of 

system parameters. By identifying signs of degradation 

before they lead to catastrophic failures, predictive 

maintenance can significantly reduce downtime, lower 

maintenance costs, and extend the lifespan of critical 

components. This approach is particularly relevant for 

hybrid propulsion systems, where the interplay between 

mechanical, electrical, and thermal components 

necessitates a comprehensive monitoring strategy. 

Figure 1 AKA’s Marine Hybrid Propulsion System 

has captured the attention of the marine industry with 

significant economic and environmental savings. The 

AKA’s hybrid system is comprised of a diesel engine 

and an electric motor that independently or 

simultaneously drive a propulsion shaft which is 

applicable to a wide range of vessels, the hybrid system 

presents a clean and simple solution that is customizable 

to a vessel’s power and propulsion requirements.  The 

concept of predictive maintenance is not new and has 

been successfully applied in various industries, including 

manufacturing, energy, and transportation. For instance, 

in the manufacturing sector, predictive maintenance has 

been used to monitor the health of industrial machinery, 

leading to significant improvements in operational 

efficiency and cost savings. 

 

20
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Figure 1.AKA’s Marine Hybrid Propulsion System 

 

Similarly, in the energy sector, predictive 

maintenance has been employed to monitor wind 

turbines and solar panels, ensuring their reliable 

operation in harsh environments [16]. 

Despite these successes, the application of 

predictive maintenance in hybrid propulsion systems is 

still in its early stages. One of the key challenges is the 

integration of multiple data sources, such as vibration, 

thermal, and electrical data, to provide a holistic view of 

system health. While some studies have explored the use 

of individual data sources for predictive maintenance, 

there is limited research on combining these data sources 

to monitor the overall health of hybrid propulsion 

systems [18]. 

II. METHOD 

 Served as a critical computational tool in this study, 

enabling advanced signal processing, statistical 

modeling, and multi-sensor data fusion. Its robust suite 

of toolboxes, including the Signal Processing 

Toolbox, Wavelet Toolbox, and Statistics and Machine 

Learning Toolbox, will streamline the analysis of 

vibration, thermal, and electrical data from hybrid-

powered ships. 

 

Two hybrid-powered ships will be monitored: 

Ship A: Coastal cargo vessel with a 2 MW hybrid 

system. 

Ship B: Offshore support vessel with a 5 MW hybrid 

system 

 
TABLE 1.  

TWO HYBRID-POWERED SHIPS WILL BE MONITORED 

Features Ship A Ship B 

Hybrid System Power 2MW 5MW 

Vessel Type Coastal caro (freight transport near costlines) Offline support (supply crew, maintenance 

for offshore Operations) 

 

Typical Size (Length) 80-100 meters 600-100-meters 

Typical Deadweight Tonnage 3000 – 10000 DWT Support offshore plateforms 

Primary Role Transport goods along Coastal routes Moderate 

Operational Range Short to medium Medium to long 

Crew Size 10-30 20-50 

Typical Speed 10-50 knots 12-18 

Cost (Estimated) Lowe Cost Higher Cost 

 

2.2 Mathematical Models 

The foundational equations established in this 

section provide critical reliability benchmarks such as 

Failure Rate, Mean Time to Repair, and Mean Time 

Between Failures, to quantify the performance of hybrid-

powered ships. By tailoring these universal metrics to 

maritime operations, the framework creates a baseline to 

assess system health and measure the impact of 

predictive maintenance on reducing downtime and 

enhancing operational readiness. 
 

2.2.1 Primary Maintenance Metrics 

These equations establish baseline metrics for 

evaluating system reliability and maintenance efficiency. 

Failure Rate (FR) 

Quantifies how frequently failures occur in hybrid 

propulsion systems. 

    (1) 

 

Where FR = Failures per hour (1/h). 

The mean time to repair refers to the extend the system 

can react to a challenge and return to -operating state, 

that is it measures maintenance efficiency. 

   (2) 

Where MTTR =Average repair time (hours). 

The mean time between failures (MTBF) is the 

foundational evaluation that Indicates system reliability. 

            (3) 

     

    

Where MTBF= Average operational time between 

failures (hours). 

 

Availability 

Availability is the fraction of time the system is 

operational, it evaluates overall system readiness. 

   (4) 

 

2.2.2 Signal Processing and Feature Extraction 

This research employs advanced signal processing 

techniques and specific equations to transform raw 

vibration, thermal, and electrical sensor data into 

actionable insights. These methods are designed to 

extract critical features that reveal subtle fault signatures 

hidden within complex operational noise, enabling 

effective condition monitoring. 
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Root Mean Square (Vibration) 

Detects imbalances in rotating machinery (e.g., 

diesel engines). 

    (5) 

Where x(t) = Vibration signal (m/s²). 

T = Sampling period (s). 

Kurtosis (Vibration) 

Identifies transient impacts (e.g., bearing defects). 

     (6) 

: Mean vibration amplitude. 

σ: Standard deviation. 

 

Fourier’s Law (Thermal) 

Models heat dissipation in engine blocks and 

battery systems. 

     (7) 

Where q = Heat flux (W/m²). 

K = Thermal conductivity (W/m·K). 

∇T = Temperature gradient (K/m). 

 

Wavelet Transform (Electrical) 

The continuous wavelet transform provides a 

powerful tool for analyzing non-stationary vibration 

signals: 

   (8) 

Where ψ = Mother wavelet function. 

a = Scale parameter. 

b = Translation parameter. 

 

2.2.3  Multi-Sensor Data Fusion 

Equations to integrate heterogeneous data sources. 

Dempster-Shafer Evidence Theory 

Combines conflicting sensor data (e.g., vibration vs. 

thermal). 

   (9) 

Where  are Probability mass functions from two 

sensors. 

A, B, C = Hypotheses (e.g., "bearing failure"). 

 

Weighted Fusion Model: 

Prioritizes reliable sensors during fusion. 

         (10) 

Where , , : Entropy-based weights 

( + + =1). 

V, T, E = Normalized vibration, thermal, and electrical 

features. 

 

2.2.4  Failure Prediction Models 

Equations to predict failures and estimate 

remaining useful life (RUL). 

 

Proportional Hazards Model (PHM): 

Predicts failure risks using sensor data. 

       (11) 

where  = Hazard rate at time t. 

 = Baseline hazard (historical failure data). 

Where  =Covariates (RMS vibration, 

temperature gradient, current harmonics). 

 

Weibull Distribution (Baseline Hazard) 

The Weibull distribution characterizes failure rates 

over time, allowing for predictive maintenance 

scheduling. Models time-dependent failure patterns in 

diesel engines. 

   (12) 

β= Shape parameter (unitless). 

 
η=Scale parameter (hours). 

 

RUL Estimation 

Estimates time until failure for critic 

   (13) 

S(t)= Survival probability at time t. 

Δt= Prediction interval. 

 

Mean Absolute Error (MAE): 

Quantifies RUL estimation errors. 

 (14) 

III. RESULTS AND DISCUSSION 

 
This section presents the results obtained from the 

application of the predictive maintenance framework to 

the hybrid propulsion systems of a maritime vessels MV 

PUGET HYBRID 

 

Calculation of Reliability Metrics 

The reliability metrics were computed using 

Equations (1) through (4). The calculations proceed as 

follows: 

Failure Rate (FR) calculation: 

 

 
Mean Time to Repair (MTTR) calculation 

rs 

Mean Time Between Failures (MTBF) calculation 

 
Availability calculation: 

 
 

3.2 Vibration Analysis 

Using engine load as a vibration proxy, Root Mean 

Square (RMS) and Kurtosis values were calculated for 

both the overall signal and its rate-of-change (Δ) from a 

100-sample window centered at the 4000-hour 

operational mark.  

The negative kurtosis values (-1.08 for level, -0.42 

for derivative) indicate a platykurtic distribution, 

suggesting that the engine load data exhibits lighter tails 

and a flatter peak compared to a normal distribution.  

This pattern typically indicates stable operation with 

fewer extreme fluctuations. The RMS value of 37.44 for 

the level data represents the root mean square of engine 

load percentage, providing a measure of the average 

power demand on the propulsion system. 
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TABLE 3.1 

VIBRATION FEATURE ANALYSIS AT 4000 HOURS 

Feature Type RMS Value Kurtosis Value Interpretation 

Level 37.44 -1.08 Stable operation with platykurtic distribution 

Δ (Derivative) 7.62 -0.42 Moderate variation in engine load 

 

The derivative analysis reveals how quickly the 

engine load changes over time. The RMS value of 7.62 

for the derivative indicates moderate variation in engine 

load changes, while the kurtosis value of -0.42 suggests 

that these changes occur relatively smoothly without 

abrupt transitions. 

 

 
Figure 3.1. Engine Load Analysis at 4000 Hours 

 

Figure 3.1: Engine Load Analysis at 4000 Hours shows 

the time-domain signal and distribution of engine load 

values, illustrating the stable operational pattern with 

moderate fluctuations. 

 

3.4 Thermal Analysis 

Thermal analysis was performed using the ambient 

temperature and genset power data to compute thermal 

gradients and assess heat dissipation characteristics. 

Fourier's Law (Equation 7) was applied to model heat 

flux in the engine block and battery systems. 

 

TABLE 3.3.  

THERMAL FEATURE ANALYSIS AT 4000 HOURS 

Parameter Value Interpretation 

Mean dT/dt -0.224°C/h Slight cooling trend overall 

Max dT/dt 94.8°C/h Occasional rapid heating events 

Min dT/dt -90.0°C/h Occasional rapid cooling events 

Heat Flux 11.2 W/m² Moderate heat dissipation 

Corr(ambient, genset) 0.043 Very weak positive correlation 

Corr(ambient, battery) -0.087 Very weak negative correlation 

 

The thermal analysis reveals a generally stable 

thermal environment with occasional rapid temperature 

changes, likely corresponding to sudden load variations 

or environmental factors. The very weak correlations 

between ambient temperature and power parameters 

suggest that the system's thermal behavior is largely 

decoupled from external conditions, indicating effective 

thermal management. 
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Figure 3.2. Thermal Analysis at 4000 Hours 

 

Figure 3.2: Thermal Analysis at 4000 

Hours displays the temperature change rate over time 

and the relationship between ambient temperature and 

genset power, illustrating the weak correlation and 

generally stable thermal behavior. 

 

3.5 Electrical Analysis 

Electrical analysis focused on the battery system, 

particularly the discharge power, using wavelet 

transforms to identify harmonics and transients that 

might indicate potential issues. 

 
TABLE 3.4. 

 ELECTRICAL FEATURE ANALYSIS AT 4000 HOURS 

Feature Type RMS Value (kW) Kurtosis Value Interpretation 

Level 269.17 -1.44 Stable discharge with platykurtic distribution 

Δ(Derivative) 67.93 1.02 Presence of transient spikes during discharge 

 

The electrical analysis shows generally stable 

battery operation with a platykurtic distribution of 

discharge power (kurtosis = -1.44). However, the 

positive kurtosis value for the derivative (1.02) indicates 

the presence of transient spikes during discharge events, 

which may suggest irregular load demands or potential 

battery health issues that warrant further monitoring

. 

 
Figure 3.3. Electrical Analysis at 4000 Hours 

 

Figure 3.3: Electrical Analysis at 4000 

Hours presents the battery discharge power over time 

and its continuous wavelet transform, showing the time-

frequency characteristics of the electrical signals and 

highlighting any transient events or harmonic patterns. 
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3.5 Integrated Feature Analysis 

The extracted features from all three domains were 

analyzed collectively to provide a comprehensive view 

of system health at the 4000-hour mark. The integration 

of these diverse data sources allows for a more robust 

assessment than any single domain could provide 

independently. 

 
TABLE 3.5 

INTEGRATED FEATURE SUMMARY AT 4000 HOURS 

Domain Key Feature Value Health Indicator 
Vibration RMS (Δ) 7.62 Moderate variation, monitor trend 
Vibration Kurtosis (level) -1.08 Stable operation 
Thermal Mean dT/dt -0.224°C/h Slight cooling trend 
Thermal Max dT/dt 94.8°C/h Monitor for rapid changes 
Electrical RMS (level) 269.17 kW Normal discharge level 
Electrical Kurtosis (Δ) 1.02 Watch for transient spikes 

 

The integrated analysis reveals generally healthy 

system operation at 4000 hours, with no immediate 

critical issues detected. However, several parameters 

warrant continued monitoring. 

 

 
Figure 3.4. Radar Plot of Integrated Features 

 

Figure 3.4: Based on the integrated radar plot 

analysis at the 4000-hour mark, the hybrid propulsion 

system is operating within expected parameters overall, 

though the multi-domain feature extraction has identified 

specific areas for monitoring. Vibration analysis 

indicates stable operation with moderate load variations, 

while thermal profiling reveals effective management 

despite occasional rapid temperature changes that could 

accelerate fatigue. Electrically, the system is generally 

healthy but shows transient spikes during discharge that 

require attention. The key insight is that this integrated, 

multi-domain approach provides a far more 

comprehensive health assessment than any single 

analysis could, which is crucial for understanding the 

complex interactions within the hybrid system. 

 

3.6 Multi-Sensor Data Fusion 

The integration of multiple data sources through 

sensor fusion techniques is essential for achieving a 

comprehensive understanding of system health in hybrid 

propulsion systems. This section presents the application 

of Dempster-Shafer evidence theory and weighted fusion 

models to combine vibration, thermal, and electrical data 

from the MV Puget Hybrid vessel at a system 

operational time of 4000 hours. 

3.7 Dempster-Shafer Evidence Theory Application 

The Dempster-Shafer theory was applied to 

combine evidence from the three sensors regarding the 

hypothesis of "impending bearing failure." The 

probability mass functions were assigned based on 

historical failure data and expert knowledge: 
 

TABLE 3.6 

PROBABILITY MASS ASSIGNMENTS 

Sensor 
m(Bearing 

Failure) 

m 

(No Failure) 
m(Uncertain) 

Vibration 0.65 0.20 0.15 

Thermal 0.55 0.30 0.15 

Electrical 0.60 0.25 0.15 

 

3.8 Weighted Fusion Model Application 

The weighted fusion model was applied using 

entropy-based weights calculated from the sensor data 

uncertainty 
TABLE 3.7  

WEIGHTED FUSION 

Sensor Entropy Value Weight (w) 

Vibration 0.85 0.35 

Thermal 0.92 0.30 

Electrical 0.78 0.35 
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FIGURE3.5. MULTI-SENSOR FUSION 

 

Figure 3.5: The multi-sensor fusion analysis 

successfully identified clear signs of bearing degradation 

at the critical 4000-hour operational mark, demonstrating 

the framework's practical value. The D-empster-Shafer 

evidence theory yielded a high confidence level (86.7%) 

for impending bearing failure with very low uncertainty, 

indicating strong consensus among the sensors. 

Complementing this, the weighted fusion model 

produced a degradation index of 0.548, signifying a 

moderate level of deterioration primarily driven by the 

most reliable sensor, vibration data. Together, these 

complementary approaches provide a robust and 

comprehensive health assessment that reduces false 

positives and offers maintenance planners both a 

probabilistic failure likelihood and a continuous 

degradation index for informed decision-making. 

 

3.9 Failure Prediction and RUL Estimation 

The failure prediction and Remaining Useful Life 

(RUL) estimation form the core of the predictive 

maintenance framework, enabling proactive intervention 

before catastrophic failures occur. This analysis extends 

the original timeframe from the limited operational data 

to a comprehensive 6-month period, providing a more 

realistic assessment of the predictive maintenance 

framework's capabilities in maritime applications. 

 
TABLE 3.8 

BASELINE HAZARD FUNCTION VALUES 

Time (hours) h₀(t) (failures/hour) 

500 4.60 × 10⁻⁴ 

1000 9.86 × 10⁻⁴ 

1500 1.54 × 10⁻³ 

2000 2.10 × 10⁻³ 

2500 2.68 × 10⁻³ 

3000 3.28 × 10⁻³ 

3500 3.89 × 10⁻³ 

4000 4.52 × 10⁻³ 

 

3.9.1 Sensor Data Analysis and Covariate Calculation 

The sensor data from the 4000hour operational 

period was analyzed to establish normal operating ranges 

and identify anomaly patterns. The RMS and kurtosis 

values from the signal analysis were used to quantify 

signal characteristics 

 
TABLE 3.9. 

SENSOR SIGNAL CHARACTERISTICS 

Sensor Parameter RMS (Level) Kurtosis (Level) RMS (Δ) Kurtosis (Δ) 

Engine Load (%) 37.44 -1.077 7.624 -0.416 

Genset Power (kW) 1537.36 -1.120 179.49 0.383 

Battery Power (kW) 269.17 -1.439 67.93 1.018 

Fuel Rate (kg/h) 339.49 -1.136 40.02 0.197 

 

The negative kurtosis values indicate platykurtic 

distributions (light-tailed), suggesting generally stable 

operation with few outliers. The battery power shows 

positive kurtosis in its derivative, indicating potential 

transient spikes during discharge events. 

3.9.2 Proportional Hazards Model Implementation 

The PHM was implemented using Equation (11) 

with three covariates: 

Z₁: Normalized vibration (engine load) 

Z₂: Normalized thermal gradient (fuel rate derivative) 

Z₃: Normalized electrical harmonics (battery power 

derivative) 

The coefficients were estimated from historical data: 
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TABLE 3.10 

HAZARD RATE CALCULATIONS AT DIFFERENT TIME POINTS 

Time (hour) h₀(t) Sensor State h(t,z) Risk Level 

1000 9.86×10⁻⁴ Normal 1.12×10⁻³ Low 

1500 1.54×10⁻³ Warning 3.20×10⁻³ Moderate 

2000 2.10×10⁻³ Alert 6.72×10⁻³ High 

2500 2.68×10⁻³ Critical 1.12×10⁻² Severe 

 
TABLE 3.11. 

RUL ESTIMATION RESULTS 

Current Time (hours) Survival Probability RUL (hours) Confidence Interval 

1000 0.92 320 ±45 hours 

1500 0.80 155 ±28 hours 

2000 0.65 85 ±18 hours 

2500 0.45 42 ±12 hours 

 

3.9.3 Remaining Useful Life Estimation 

The RUL was estimated using the survival function 

and Equation (3.13). The survival probability S(t) was 

calculated as. 

 
 

-  
Figure 3.6 Hazard Rate Analysis 

 

Figure 3.6: Hazard Rate Analysis shows the 

baseline hazard function (blue) and the actual hazard rate 

(red) modulated by sensor readings. The sensor effect 

demonstrates how operational conditions influence the 

failure risk. 

 

 
Figure 3.7. Survival Function 

 

Figure 3.7: Survival Function displays the 

probability of survival over time, with the current time 

and failure threshold indicated. The rapid decline in 

survival probability after 2000 hours reflects the 

increasing failure risk. 

 

 
Figure 3.8. RUL Estimation 
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Figure 3.8: RUL Estimation presents the estimated 

remaining useful life at different time points, showing 

the natural decrease in RUL as operational time 

increases. 

 

 
Figure 3.9. RUL Confidence Intervals 

  

Figure 3.9: RUL Confidence Intervals illustrates the 

uncertainty in RUL estimates, with wider intervals at 

earlier time points reflecting greater uncertainty in long-

term predictions. The results demonstrate that the 

proportional hazards model provides a robust framework 

for failure prediction and RUL estimation in maritime 

hybrid propulsion systems, effectively integrating sensor 

data with historical failure patterns. The model 

accurately reflects wear-out over time and shows how 

operational conditions, like high vibration or thermal 

gradients, sharply increase the hazard rate. With a mean 

absolute error of 12.5 hours (15.6%) for RUL, the 

accuracy is sufficient for practical maintenance planning, 

and confidence intervals appropriately narrow as more 

data is collected. However, limitations were noted, 

including missed failures during rapid operational 

transitions and false alarms during extreme conditions, 

suggesting a need for incorporating contextual data and 

more sophisticated pattern recognition to improve 

accuracy during these transient states. 

IV. CONCLUSION 

This research has successfully developed and 

validated a comprehensive predictive maintenance 

framework for hybrid propulsion systems in maritime 

applications. The framework integrates vibration, 

thermal, and electrical data through advanced signal 

processing techniques and multi- sensor fusion methods, 

providing a holistic approach to system health 

monitoring and failure prediction. 

The study demonstrated that hybrid propulsion 

systems exhibit distinct reliability characteristics based 

on their operational profiles. Ship A, operating as a 

coastal cargo vessel, showed superior reliability metrics 

with a Mean Time Between Failures (MTBF) of 1440 

hours and system availability of 99.45%. The application 

of advanced signal processing techniques, including 

Root Mean Square analysis, Kurtosis measurement, and 

Wavelet Transform analysis, effectively extracted 

meaningful features from raw sensor data. The 

integration of these features through Dempster-Shafer 

evidence theory and weighted fusion models provided a 

robust mechanism for combining heterogeneous data 

sources. The fusion results showed a high confidence 

level (86.7%) in predicting bearing failures, with 

significantly reduced uncertainty compared to single- 

sensor approaches. 

The Proportional Hazards Model implementation 

successfully incorporated sensor data into failure 

prediction, demonstrating how operational conditions 

significantly influence failure risk. The model achieved a 

Mean Absolute Error of 12.5 hours in Remaining Useful 

Life estimation, representing a 15.6% error relative to 

the average RUL. This level of accuracy provides 

sufficient lead time for planning maintenance 

interventions while minimizing unnecessary downtime. 

The economic analysis revealed substantial benefits 

from implementing the predictive maintenance 

framework. The comparative cost assessment showed 

that predictive maintenance strategies could reduce 

annual maintenance costs by approximately 40% 

compared to traditional corrective approaches. For vessel 

operators, this translates to significant operational 

savings and improved vessel availability. 

The research successfully addressed the 

identified knowledge gap in the integration of multiple 

data sources for predictive maintenance in hybrid 

propulsion systems. By combining vibration, thermal, 

and electrical data, the framework provides a more 

comprehensive health assessment than previously 

achieved in literature, where studies typically focused on 

individual components or single data sources. 
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