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Abstract. High-resolution assessment of rooftop solar photovoltaic (PV) potential in urban areas is often constrained by the high 

cost of commercial data like LiDAR and the computational intensity of analyzing complex geometries. This study develops and 

applies a novel, fully open-source remote sensing workflow that leverages cloud computing to overcome these limitations. The 

methodology integrates open-source building and canopy height data to generate a Digital Surface Model (DSM) and introduces a 

novel Urban Geometric Correction Factor (UGCF). The UGCF combines a multi-temporal Shading Factor, calculated efficiently 

in Google Earth Engine (GEE), with a Sky View Factor (SVF) to realistically model solar irradiance on individual rooftops. Applied 

to the complex urban morphology of Padang Utara, Indonesia, the workflow identified significant potential, with 47.17% of viable 

rooftops classified as 'Optimal' or 'Very Optimal', with a radiation value range of 758.8–848.63 kWh/m²/year. Spatially, the highest 

potential is concentrated in lower-profile residential areas, not necessarily on the tallest buildings, Critically revealed that internal 

roof shading is a dominant limiting factor for large buildings. This research presents a cost-effective and replicable methodology, 

contributing a significant tool for detailed urban solar potential assessment and supporting data-driven sustainable energy planning. 

Keywords: Cloud computing; High-Resolution Mapping; Open-source Remote Sensing Rooftop Solar Potential; Urban Geometric 

Correction. 

 

I. INTRODUCTION 

The transition to clean and affordable energy has become 
an urgent necessity. The energy sector contributes 
significantly to carbon dioxide emissions, accounting for 
34% of global emissions [1]. The high dependence on 
fossil-based energy sources is the main cause of this 
condition  [1], which makes the energy sector play a vital 
role in efforts to reduce the effects of climate change due to 
increasing greenhouse gases [2], [3]. 

Countries around the world have highlighted the 
importance of this issue and have formulated common goals 
in the transition to clean energy as outlined in the 
Sustainable Development Goals (SDGs), particularly in 
point 7, which is to achieve clean and affordable energy by 
2030 [4].  

Indonesia has also adopted this goal, as reflected in 
Presidential Regulation No. 112 of 2022 concerning the 
Acceleration of Renewable Energy Development for 
Electricity Supply and Minister of Energy and Mineral 
Resources Regulation No. 10 of 2025 concerning the Road 
Map for the for the Electricity Sector Energy Transition, 
which is committed to achieving Net Zero Emissions by 
2060 [5]. The implementation of this clean energy transition 
is realized through the use of clean energy as the main 
source of electricity. One of the most promising sources of 
clean energy for urban areas today is rooftop solar 
photovoltaic (PV) [6]. 

 

The use of rooftop solar PV in urban areas has become a 
promising alternative solution in efforts to reduce carbon 

emissions in the energy sector in urban environments [7]. 
Roof-mounted solar power systems can reduce the 
workload of conventional electricity grids and do not 
require large areas of land as they can utilize available 
rooftops [8], [9]. This condition is also supported by 
Indonesia's highly potential location. 

Indonesia's location near the equator means that solar 
radiation is abundant and tends to be stable throughout the 
year. With an average daily global horizontal irradiance 
(GHI) of 4.8 Kwh/m2, the potential for developing rooftop 
solar PV in this country is very feasible [10]. However, in 
reality, this condition still faces various significant 
challenges. 

In more detailed studies, LiDAR data is used to model urban 
geometry and analyze the effects of shadows and sky view 
factors on the location of rooftop solar power plants. The 
LiDAR method can produce more detailed and realistic 
analyses, but it tends to be expensive, requires large 
computing capacity, and takes a relatively long time, 
making it relatively difficult to replicate in other areas with 
limited resources [11], [12], [13], [14], [15]. To address 
these challenges, innovative solutions are needed, one of 
which is to utilize open source data and cloud computing 
technology. 

Currently, there is a wealth of detailed open source data and 
cloud computing platforms available that can be utilized in 
detailed processing and analysis. One example is the 
Google Open Building 2.5D and Global Canopy Height 
data developed by Google, WRI, and Meta [16], [17]. This 
data has an resolution 1 meters, which can be combined into 
a Digital Surface Model (DSM) and used freely to support 
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the development of various urban analyses. In data analysis, 
Google Earth Engine (GEE) is also a promising option for 
cloud-based spatial data processing. GEE is an open-access 
cloud computing platform that connects to various open 
source data without the need to download large datasets, 
thereby saving local resources and memory [18]. In 
addition, this platform also provides various ready-to-use 
functions and algorithms that can assist with various data 
analysis needs, making it very helpful for more effective 
and efficient computing. Data and analysis from this 
platform can be integrated with solar radiation data from the 
Himawari-8 satellite and meteorological data such as 
temperature and wind, enabling the calculation of 
meteorological correction factors and urban geometric 
correction factors, which form the basis for determining the 
optimal location for rooftop solar PV [16], [17], [18].  

In Indonesia itself, there has not been much detailed 
research that integrates open-source remote sensing data 
with cloud computing in determining the potential of 

rooftop solar PV in urban areas. Therefore, this study offers 
a new workflow that can integrate these two factors. This 
integration not only addresses the challenges of cost and 
availability of commercial data such as LiDAR, but also 
enables complex urban geometry analysis to be calculated 
more effectively and efficiently through the Google Earth 
Engine platform. The contribution of this research is 
expected to serve as a basis for policymakers in data-driven 
sustainable energy planning, thereby helping to determine 
the optimal location for rooftop solar PV in an effort to 
achieve clean and affordable energy goals in urban areas. 

 

II. METHODOLOGY 

2.1 Research Location 

The research location is in Padang Utara Subdistrict, 
Padang City. It is located at 00°53'22“ S – 00°56'8” S and 
100°20'31“ E – 100°22'40” E.  Padang Utara Subdistrict 

 
 

Figure 1. Study Area of Padang utara Subdistrict, Padang City 
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consists of seven subdistricts. This subdistrict is bordered 
by Kuranji Subdistrict to the east and the Indian Ocean to 
the west, Koto Tangah and Naggalo Subdistricts to the 
north, and Barat and Timur Padang Subdistricts to the south 
[19]. This subdistrict is home to many government offices, 
commercial centers, and educational institutions, making it 
one of the most densely populated subdistricts in Padang 
City (Fultriasantri & Fajrin, 2023; Peraturan Wali Kota 
Padang  Nomor  5  Tahun 2023 Tentang  Rencana Detail 
Tata Ruang Kota Padang Tahun 2023 - 2043, 2023). The 
location can be seen in more detail in Fig. (1).  

 

2.2 Tools and Materials 

a) Tools 

Data processing and analysis in this study were 

conducted using three main platforms. Google Earth 

Engine (GEE) was used to process DSM data using the 

multi-temporal hillshadow function to obtain dynamic 

shadow analysis. The QGIS application (v. 3.34.12) 

served as the main tool for spatial data analysis and 

visualization, including meteorological data 

interpolation (IDW), data aggregation using zonal 

statistics, and final calculation of correction factors 

through field calculators. Third, the Python 

programming language on the Google Collab platform 

was used to perform statistical analysis and data 

visualization of the processing results [22][23]. 

b) Materials 

This study utilizes monthly shortwave radiation (SWR) 
data from JAXA's Himawari-8 satellite as input for 
calculating solar radiation in 2024 [24]. Building height 
data was obtained from Google Open Building 2.5 D 
open source data with a resolution of 1 m [16]. This data 
was then combined with canopy height data from Meta 
and WRI [17], as well as Fabdem from Copernicus to 
obtain Digital Surface Model (DSM) data for the 
Padang Utara subdistrict. Building footprint data was 
obtained from OpenStreetMap (OSM) open source data, 
monthly air temperature data for 2024 sourced from the 
Meteorology, Climatology, and Geophysics Agency 
(BMKG), and wind speed data from NASA Power, 
which was then analyzed using Inverse Distance 
Weighting (IDW) to obtain the distribution of monthly 
air temperature and wind speed in the Padang Utara 
subdistrict for 2024 [25], [26], [27]. 

 

2.3  Data Processing 

a) Meteorological Correction Factor 

To obtain effective solar PV output, meteorological 
factors are important parameters that must be 
considered [28]. Therefore, meteorological correction 
factor analysis is essential to obtain rooftop solar PV 

potential that is more in line with field conditions. This 
study uses the Japanese Industrial Standards (JIS) 
approach as a reference framework with several 
modifications based on contemporary studies by [13]. 
Previous studies have shown that an increase in module 
temperature (cell temperature) can significantly reduce 
the power output of solar PV  [29]. Therefore, the first 
step in this study was to model the impact of 
meteorological factors (in this case, temperature and 
wind) on the potential reduction in rooftop solar PV 
capacity. The data used was solar radiation or short 
wave radiation (SWR) data from the Himawari-8 
satellite, combined with air temperature and wind speed 
data that had undergone inverse distance weighting 
(IDW) analysis. 

The analysis of meteorological factors begins with the 

calculation of wind effects. Wind can increase 

efficiency by cooling the modules and blowing away 

dust that accumulates on the solar PV [12], [30]. To 

calculate the effect of wind speed on solar panels, the 

following Eq. (1). can be used: 

 

 

 𝑊𝑖𝑛𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 =
9.5

5.7+3.8𝑉
                                           (1) 

 

Where V is wind speed in (m/s). 
In the next step, the module temperature (Tc) is 
calculated using the following Eq. (2). 

𝑇𝑐 =  𝑇𝑎 +
𝐼𝑡𝑜𝑡

𝐼𝑁𝑂𝐶𝑇
(𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑁𝑂𝐶𝑇) × 𝑤𝑖𝑛𝑑𝑒𝑓𝑓𝑒𝑐𝑡   (2) 

 
Where Tc is the cell temperature and Ta is the air 
temperature in Celsius (C). Itot is the total irradiation 
data reaching the earth's surface (W/m2), INOCT is the 
irradiation at the Nominal Operating Cell Temperature 
in this study set at 800 Watts, TNOCT is the temperature 
at the Nominal Operating Cell Temperature in this 
study valued at (45 °C) [29], [31], and TaNOCT is the air 
temperature under NOCT conditions in this study, used 
as the value of (20 °C) [29]. 

After obtaining the cell temperature analysis, the 

calculation of the decrease in solar cell performance 

caused by temperature (TempLoss) or meteorological 

correction factors is continued using the Eq. (3). 

 
𝑇𝑒𝑚𝑝𝐿𝑜𝑠𝑠 = 1 + 𝛽𝑟𝑒𝑓(𝑇𝑐 − 𝑇𝑠)                             (3) 

 
Where Tc is the cell temperature and Ts is the 

temperature under standard test conditions (25°C) and 

βref is the efficiency correction coefficient for 

temperature (/C), which in this study is set at 

−0.0045/C [31]. 
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b) Urban Geometric Correction Factor 
The shadow factor from buildings and vegetation is 
also an important consideration for the effectiveness of 
rooftop solar PV output in urban areas. The presence of 
taller trees and buildings casts shadows on smaller 
buildings, reducing the amount of direct sunlight they 
receive [32]. Two parameters are used to assess this 
impact: shaded area and sky view factor. 
 
To determine the dynamically shaded area, this study 
uses the ee.Terrain.hillshadow function on the Google 
Earth Engine (GEE) cloud computing platform. This 
platform was chosen because it can perform large-scale 
spatial data processing in parallel and is well suited for 
intensive multi-temporal analysis. Unlike conventional 
hillshade, which only produces static visualizations, 
hillshadow can generate shadowed areas based on the 
sun's position at a specific time, represented in binary 
form where 0 denotes shadowed areas and 1 denotes 
illuminated areas [33].  

The position of the sun (azimuth and zenith angles) in 
this study was extracted using the 
pvlib.location.Location Python function from the pvlib 
library on the Google Collab platform [34]. This 
analysis was conducted at seven representative times 
throughout the day (7:00 a.m., 9:00 a.m., 11:00 a.m., 
12:00 p.m., 2:00 p.m., 3:00 p.m., and 5:00 p.m.) on the 
15th of each month [34], [35]. This data is then 
aggregated by summing it up and dividing it by the total 
observation time, so that the values on the map become 
continuous data ranging from 0 (always shaded) to 1 
(always sunny). This data illustrates the duration of 
time a location is exposed to direct sunlight or shade. 
This calculation applies the formula used in the study 
[36].   

In addition to the shading factor, another important 
parameter in urban climate analysis is the Sky View 
Factor (SVF). The Sky View Factor can be defined as 
an index that describes the proportion of open sky 
visible from a particular position, which directly affects 
longwave radiation. This value is represented on a scale 
of 0 to 1, where 0 indicates a completely covered sky 
and 1 indicates a completely open sky. In this study, the 
SVF was obtained using the Sky View Factor tool in 
the QGIS application, with a Digital Surface Model 
(DSM) as the input data [37]. 

These two parameters are then integrated to obtain the 
urban geometric correction factor (UGCF), which 
considers the availability of direct radiation represented 
by the Shading Factor (SF) and the availability of 
diffuse radiation represented by the SVF. In this study, 
an equation was formulated that combines these two 
parameters, supported by research [38], [39]. This 
study reveals the importance of shadow analysis and 

SVF in determining the potential of rooftop solar PV 
with the following Eq. (4). 

 
𝑈𝐺𝐶𝐹 =  (𝛼 × 𝑆𝐹) + ((1 − 𝛼) × 𝑆𝑉𝐹)       (4) 

 

Where UGCF is the Urban Geometric Correction 
Factor and α is the weighting coefficient in this study, 
which is 0.5 based on research [40] that assesses the 
proportion of direct and diffuse radiation in tropical 
regions. Furthermore, SF is the Shading Factor (value 
0-1) describing the contribution of direct radiation. 
SVF is the Sky View Factor (value 0-1), representing 
the fraction of unobstructed sky for diffuse radiation 
reception.  

c) Optimal Location of Solar PV Potential 
The third stage of this study is to determine the optimal 
location for rooftop solar PV by combining existing 
parameters using zonal statistics tools on building 
footprints, which are then calculated using the previous 
equations through a field calculator. 

To determine the optimal location for rooftop solar PV, 
an equation was used that refers to the Japanese 
Industrial Standards (JIS) approach, which was then 
modified based on several previous studies [13], [38], 
[39] with the following Eq. (5). 

 
𝑃𝑉𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐼𝑡𝑜𝑡 × 𝑇𝑒𝑚𝑝𝐿𝑜𝑠𝑠 × 𝑈𝐺𝐶𝐹 × 𝑃𝐶𝑆𝐿𝑜𝑠𝑠 ×

  𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑠𝑠 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                        (5) 

 
Where Itot is the total radiation reaching the earth's 
surface, TempLoss is the decrease in solar cell 
performance due to temperature, UGCF is the effect of 
decreased solar cell performance due to urban 
geometry. Then PCSLoss is the reduction caused by the 
power conditioning system, which in this study will be 
determined to be 0.95. SystemLoss   is the reduction due 
to the PV system, which in this study will be set at 0.95 
[41], [42]. The capacity of the solar cell in this study is 
set at 1 (Kwp). 

The results of the analysis were then classified into five 
classes using natural breaks (Jenks), which grouped the 
data based on its natural distribution into the following 
classes: very less  optimal, less optimal, moderately 
optimal, optimal, and very optimal [43]. 

The complete analysis process can be seen in Fig. (2). 
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Figure 2. Research Flow Chart 

 

III. RESULT AND DISCUSSION 

3.1 Meteorological Correction Factor Analysis    

Accurate analysis of rooftop solar PV potential requires 
correction for meteorological factors that affect solar panel 
performance in the field. The main factor modeled in this 
study is performance loss due to temperature (Temperature 
Loss), which depends on the operating temperature of the 
solar cell (Tc).  

From this data, a clear seasonal pattern can be observed, 
influenced by local climatic conditions. The cell operating 
temperature (Tc) shows the highest average values during 
the period from February to April, peaking in February 
(average 33.78 °C). This period coincides with the annual 
apparent motion of the sun, which is located in the southern 
hemisphere and close to the city of Padang, which 
generally has high solar radiation and warm air 
temperatures. Conversely, the lowest cell temperature was 
recorded in December (average 30.7 °C), which aligns with 
the peak of the rainy season. 

These temperature variations directly impact the energy 
conversion efficiency of PV panels. The performance loss 
factor (TempLoss) is calculated based on these conditions, 
where a value of 1.0 represents 100% efficiency and lower 
values indicate losses. The analysis results show that the 
most significant performance loss occurs in February, 

where the average panel efficiency drops to 96.05% from 
its standard efficiency. Conversely, the panel's optimal 
performance is recorded in December, where its efficiency 
reaches 97.42% with an average annual efficiency decline 
of 3.64%. 

The low Tc and TempLoss variations in Padang are 
directly related to the relatively small air temperature 
variation pattern. This condition is supported by research 
conducted by [44] which states that the temperature 
increase was only around 0.01°C per year during 2010–
2019. 

Although monthly TempLoss variations appear small 
(ranging between 1-2%), their impact is cumulative and 
significant in calculating annual energy potential. Ignoring 
this factor will result in an overestimation of the potential 
that can be generated. Therefore, integrating this 
meteorological correction factor is a basic step to ensure a 
more realistic and accountable estimate of rooftop solar PV 
potential. Tab. (1). presents a summary of monthly 
statistics for these two parameters across the study area. 

 

3.2 Urban Geometric Correction Factor Analysis 

In addition to meteorological factors, the main limiting 
factor for the potential of rooftop solar PV in urban 
environments is the geometry of the built environment 
itself. To calculate the combined impact of direct shading 
and sky view factor, an Urban  

Geometric Correction Factor (UGCF) is calculated for 
each building. The monthly distribution of UGCF across 
the study area is presented in a box plot in Fig. (3). 

This visualization reveals two contrasting key findings. 
First, the majority of roofs in Padang Utara Subdistrict 
show excellent geometric quality. This is evident from the 
median position (center line of the box) which consistently 
remains above 0.88 for all months. Furthermore, 75% of 
the total roofs (first quartile and above) have a UGCF value 
above 0.82. This indicates that most roofs in the study area 
are relatively open and not overly affected by shadows 
from surrounding buildings, demonstrating strong basic 
potential for rooftop solar PV development. 

Second, on the other hand, this graph also clearly identifies 
the existence of a significant subpopulation of roofs with 
poor geometric quality. This is represented by the 
numerous outliers scattered below each box plot, with 
some roofs even having UGCF values below 0.5. These 
roofs are the locations most affected by shadow effects, 
likely due to being in narrow alleys, near taller buildings or 
vegetation, or experiencing significant self-shading due to 
complex architecture. Lower UGCF values are more 
commonly found around campus areas, office buildings, 
commercial centers, and a small portion of areas adjacent 
to green open spaces. 
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TABLE 1 DESCRIPTIVE STATISTICS FOR CELL TEMPERATURE AND TEMP LOSS IN PADANG UTARA SUBDISTRICT 

Month 

Cell Temperature (Tc) TempLoss 

Min Max Mean Std Min Max Mean Std 

January 32.529 33.350 33.03317 0.252314 0.962 0.966 0.963818 0.001177 

February 33.466 34.049 33.77566 0.150494 0.959 0.962 0.960484 0.000735 

March 32.528 33.491 33.04214 0.248975 0.962 0.966 0.963711 0.001238 

April 33.146 34.164 33.63548 0.255950 0.959 0.963 0.961121 0.001256 

May 32.348 33.325 32.82825 0.246711 0.963 0.967 0.964821 0.001211 

June 32.338 33.226 32.79089 0.224220 0.963 0.967 0.964890 0.001187 

July 32.934 33.726 33.36396 0.205975 0.961 0.964 0.962356 0.000986 

August 31.163 32.325 31.77143 0.297818 0.967 0.972 0.969640 0.001260 

September 31.823 32.539 32.20018 0.183121 0.966 0.969 0.967550 0.000946 

October 32.690 33.315 33.06587 0.171833 0.963 0.965 0.963650 0.000835 

November 32.082 32.777 32.44928 0.179383 0.965 0.968 0.966374 0.000980 

December 30.408 30.973 30.69442 0.143516 0.973 0.976 0.974179 0.000722 

 

Figure 3. Box Plot Monthly Urban geometric Corection Factor at Padang Utara Subdistrict, Padang City

 

This condition is in line with research [45] stating that 
shadow correction factors around commercial areas can 
have a correction factor of 0.6. The average annual 
percentage loss in output was 11.77%. This is much lower 
than the average decline in Kingston, Canada, which was 
27% [14]. For further details, refer to the monthly 
aggregated shading factor map in Fig. (4). 

 This finding emphasizes the importance of conducting 
detailed analysis to identify suboptimal locations in the 
planning process. 

 

Finally, subtle seasonal variations were observed in the 
distribution of UGCF. A slight decrease in the median 
value and interquartile range was detected during the June-
August and December-January periods. This phenomenon 
is related to annual changes in the position of the sun. 
When the sun is lower in the sky during the northern and 
southern solstices, shadows tend to be longer because the 
sun's position tends to move away from the city of Padang, 
thereby reducing the average radiation quality across all 
districts compared to the equinox periods (March-April 
and September-October) [9], [46]. 
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Figure.4 Monthly Shading Factor Aggregat at Padang Utara Subdistrict, Padang City 

 

 
Figure.5 Optimal Location of Rooftop Solar PV at Padang Utara Subdistrict, Padang City 
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3.3 Spatial Distribution of Optimal Rooftop Solar PV 

Potential   

The culmination of this research is the integration of all 
meteorological and geometric correction factors to produce 
the final Optimal Location Map of Rooftop Solar PV for 
the Padang Utara Subdistrict, as presented in Fig. (5).  This 
map spatially visualizes the annual solar energy potential 
(kWh/m²/year) classified into five levels of optimality 
using the Natural Breaks (Jenks) method. The summary of 
this classification is provided in Tab. (2). The analysis 
reveals that a significant portion of the rooftops in the study 
area are highly suitable for solar PV installation. A 
combined 47.17% of all viable buildings fall into the 
'Optimal' (35.91%) with the range of radiation is ( 758.8 – 
792.03 Kwh/m2/year ) and 'Very Optimal' (11.26%) or ( 
792.03 – 848.63 Kwh/m2/year ) categories. These 
approximately 47,803 rooftops represent the primary 
locations with the highest potential energy yield, making 
them priority areas for future solar energy development 
programs and incentives. 

The spatial patterns revealed in the map are strongly 
correlated with the urban morphology discussed 
previously. As highlighted in the lower inset of Fig. (5) the 
highest potential rooftops (colored orange and red) are 
predominantly concentrated in residential areas 
characterized by simpler, lower-profile building structures. 
These areas benefit from minimal self-shading and less 
obstruction from neighboring buildings. 

Conversely, areas with lower potential (colored blue and 
cyan), such as the university campus area shown in the 

upper inset, are characterized by larger, architecturally 
complex buildings. Despite their height, these buildings 
exhibit lower potential per square meter due to significant 
self-shading, where taller parts of the structure cast 
shadows onto lower sections of the same roof. This finding 
underscores a critical insight: building height alone is not 
an indicator of high solar potential; rather, architectural 
simplicity and minimal shading are the dominant factors 
[47]. Office and commercial areas show the same pattern. 
In addition to being influenced by the surrounding high-
rise buildings, self-shading is also a factor that deserves 
attention. 

To see the optimal monthly radiation pattern, refer to Fig. 
(6). 

TABLE 2 CLASSIFICATION OPTIMAL LOCATION OF ROOFTOP SOLAR PV 

PADANG UTARA SUBDISTRICT 

Class Range 

(Kwh/m2/year) 

Number of 

Buildings 

Percentage 

(%) 

Very Less Optimal 

(487.07 – 677.08 ) 9113 8.99 

Less Optimal  

(677.08 – 730.3) 23014 22.71 

Moderately Optimal 

(730.3 – 758.8) 21409 21.13 

Optimal  

(758.8 – 792.03) 36393 35.91 

Very Optimal  

(792.03 – 848.63) 11410 11.26 

 
Figure.6 Monthly Optimal Radiation at Padang utara Subdistrict, Padang City 
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Furthermore, the monthly variability of solar potential was 
analyzed. The total available optimal radiation across the 
subdistrict shows a distinct seasonal pattern, with the 
highest solar resource availability in October (73.08 
kWh/m²) and the lowest in May (55.02 kWh/m²). This 
temporal variation is a crucial consideration for energy grid 
planning, indicating periods of peak and reduced solar 
generation throughout the year.  

Although this study has generally been able to determine 
the optimal location for rooftop solar power plants, it still 
has some limitations in terms of the detail of the data used 
to capture the geometry of the roof, and it has not taken into 
account the area of the roof that is suitable based on the 
existing slope. This could be a suggestion for further 
research. 

IV. CONCLUSION 

This study has developed and applied high-resolution 
spatial analysis to map the optimal potential of rooftop solar 
PV in dense tropical urban environments, using fully open-
source data and cloud computing based. By integrating 
detailed meteorological correction factors and urban 
geometric factors, this model provides more realistic 
estimates than conventional macro-scale approaches. 

The main findings indicate that Padang Utara subdistrict 
has enormous potential for decentralized solar energy 
development. Quantitatively, it was found that 47.17% of 
the total technically feasible roofs fall into the ‘Optimal’ 
and ‘Very Optimal’ categories with radiation (758.8–792. 
03 kWh/m²/year) and (792.03–848.63 kWh/m²/year), 
indicating priority locations for development. The analysis 
also revealed that while meteorological factors such as 
temperature cause an annual performance reduction of 
approximately 3.64%, the most significant limiting factor is 
urban geometry 11.77%. 

The most important scientific contribution of this study 
is the identification of the phenomenon of internal roof 
shading (self-shading) as a dominant factor that reduces the 
potential of large buildings with complex architecture. 
Contrary to the common assumption that taller buildings 
have the best potential, this study proves that roofs on lower 
buildings with simpler structures, such as those in 
residential areas, often offer higher energy efficiency. 

However, this study also acknowledges its limitations, 
namely that open source data cannot fully capture the 
variations in building roofs, so that analysis of roof slopes 
and roof geometry, which tend to be complex, has not been 
included in the analysis.  
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