MODEL KOREKSI ATMOSFER CITRA LANDSAT-7

Main Article Content

Fadila Muchsin
Liana Fibriawati
Kuncoro Adhi Pradhono

Abstract

Three methods of atmospheric correction, Second Simulation of the Satellite Signal in the Solar Spectrum (6S), Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) and the model Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), have been applied to the level 1T Landsat-7 image Jakarta area. The atmospheric corrected image is then compared with the TOA reflectance image. The results show that there is an improvement of the spectral pattern on the TOA reflectance image by the decrease of the reflectance value of each object by (1 - 11) % after the atmospheric correction of all models for visible bands (blue, green and red). In the NIR and SWIR bands there is an increase in the spectral value of about 1% to the TOA reflectance on all objects except wetland for the LEDAPS model. The percentage of the increase and the decrease in spectral values of 6S and FLAASH models have the same tendency. Analyzes were also performed on the NDVI values of each model, where NDVI values were relatively higher after atmospheric correction. The NDVI value of rice crop on FLAASH model is the same as 6S model that is equal to 0.95 and for wetland, it has the same value between FLAASH model and LEDAPS which is 0.23. NDVI value of entire scene for FLAASH model = 0.63, LEDAPS model = 0.56 and 6S model = 0.66. Before the atmospheric correction, the TOA is 0.45.

Article Details

How to Cite
[1]
F. Muchsin, L. Fibriawati, and K. A. Pradhono, “MODEL KOREKSI ATMOSFER CITRA LANDSAT-7”, INDERAJA, vol. 14, no. 2, pp. 101–110, Dec. 2017.
Section
Articles