OPTIMASI PARAMETER DALAM KLASIFIKASI SPASIAL PENUTUP PENGGUNAAN LAHAN MENGGUNAKAN DATA SENTINEL SAR
Main Article Content
Abstract
In this study, application of Sentinel-1 Synthetic Aperture Radar (SAR) data for the land use cover classification was investigated. The classification was implemented with supervised Neural Network classifier for Dual polarization (VH and VV) Sentinel-1 data using texture information of gray level co-occurance matrix (GLCM). The purpose of this study was to obtain the optimum parameters in the extraction of texture information of pixel window size, the orientation of neighboring relationships on the texture feature extraction, and the type of texture information feature used for the classification. The classification results showed that in the study area, the best accuracy obtained is 5 × 5 pixel window size, 00 orientation angle, and the use of entropy texture information as classification input. It was also found that more features texture information used as classification input can improve the accuracy, and with careful selection of appropriate texture information as classification input will give the best accuracy.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.