MODEL ESTIMASI TINGGI MUKA AIR TANAH LAHAN GAMBUT MENGGUNAKAN INDEKS KEKERINGAN
Main Article Content
Abstract
The Ground Water Level plays an important role in determining the greenhouse gas emission and, in turn, in regulating global climate system. Information on existing water levels is still using field measurements. The purpose of this study was to evaluate the best approximation model for estimating water level using drought index. This study utilizes Landsat 8 data to calculate Normalized Difference Water Index and Visible and Shortwave infrared Drought Index for 3 months (March, April and June 2016). The best estimation model is selected by the Akaike Information Criteria correction method and validated using K-Fold cross-validation. The results of this study indicate that the estimation of water level is affected by both drought indices with the TMA (mm) equation = -439,47 – 1639,7 * NDWI_Maret – 640,23 * NDWI_April + 477 * VSDI_Maret. Estimated water level began to detect hotspots ranging from 64,35 ± 36,9 6 cm (27 - 101 cm). The critical point for KHG Sei Jangkang - Sei Liong is 27 cm, thus the water level depth should be maintained less than that to avoid fire in peatlands.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.