The Use of Active Remote Sensing Data and Adaptive Threshold Method for Analysing Oil Spill in West Side of Java Sea

Main Article Content

Bhisma Kusuma Wardhana
Filsa
Noorlaila

Abstract

Oil spill phenomena, particularly in the West Side of Java Sea, occur due to the dense oil industry and maritime activities causing potential vulnerability to oil pollution. Rapid detection of oil spill distribution needs to be conducted to minimize the resulting impacts. By developing an early detection method for oil spills in the Western Java Sea using Synthetic Aperture Radar (SAR) technology from Sentinel-1A Satellite using SNAP software with an Adaptive Threshold approach. The detection method is based on the principle that oil causes the sea surface to become calm, resulting in a drastic reduction in radar wave reflection values. Research results show oil spill detection in June 2023 with an area reaching 73,823 km² and an accuracy level of 93,75% based on confusion matrix validation. This research also integrates windfield analysis to support radar image interpretation, with wind speed estimation results of 1-12 m/s and dominant direction toward northwest to north. Windfield data was validated using BMKG reanalysis data and Copernicus Marine My Ocean Pro. The developed method is superior to optical imagery in terms of detection visualization and object classification capability within the spill area. The findings of this research provide important contributions to the development of effective monitoring and response systems to protect marine ecosystems, and can serve as a basis for planning environmental impact mitigation from oil spills in the region.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
B. K. Wardhana, F. Bioresita, and N. Hayati, “The Use of Active Remote Sensing Data and Adaptive Threshold Method for Analysing Oil Spill in West Side of Java Sea”, INDERAJA, vol. 19, no. 2, pp. 82–89, Oct. 2025.
Section
Articles

References

A. Ahyadi, R. S. Prabowo, dan M. A. Rahman, "Analisis Risiko Tumpahan Minyak di Laut Jawa: Studi Kasus di Pantai Timur Lampung," Jurnal Teknik Lingkungan, vol. 12, no. 1, pp. 45-58, 2021.Herawati, Niniek. (2007). Analisis risiko lingkungan aliran air lumpur lapindo ke badan air.

Febrianti, M., Saefullah, A., Nurhayati, N., & Tohhiroh, T. (2024). Implementasi Konsep ESG (Environmental, Social, and Governance) dalam Pengembangan Ekonomi Biru di Kawasan Indo Pasifik: Studi Kasus Chairmanship Indonesia di ASEAN Tahun 2023 STIE Ganesha (Vol. 1, Issue 1).

Sulma, S., Insan Nur Rahmi, K., Febrianti, N., Jansen Sitorus Pusat Pemanfaatan Penginderaan Jauh (2019). DETEKSI TUMPAHAN MINYAK MENGGUNAKAN METODE ADAPTIVE THRESHOLD DAN ANALISIS TEKSTUR PADA DATA SAR (Oil Spill Detection using Adaptive Threshold and Texture Analysis Methode on SAR Data). https://doi.org/10.24895/MIG.2019.25-1.925

Kusman, A. (2008). Studi Deformasi Gunung Api Batur Dengan Menggunakan Teknologi Sar Interferometri (InSAR). Teknik Geodesi dan Geomatika. Fakultas Ilmu dan Teknologi Kebumian. ITB - Bandung, Indonesia.

Alpers, W. dan Espedal, H. (2004). Oils and Surfactants. Chapter 11 in Synthetic Aperture Radar Marine User’s Manual, National Oceanic and Atmospheric Administration (NOAA). Jackson, C.R. and Apel, J.R.(Eds.), 263-275.

Prastyani, R dan Basith, A. (2018). Utilisation of Sentinel-1 SAR Imagery For Oil Spill Mapping : A Case Study Balikpapan Bay Oil Spill. Departemen Teknik Geodesi. Universitas Gadjah Mada. UGM – Jogjakarta, Indonesia.

X. Li, X. Yang, and W. G. Pichel, "Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model," IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 452-463, Jan. 2020, doi: 10.1109/TGRS.2019.2936866.

Wang, H., Yang, J., dan Liu, A. (2019). Validation of CMOD5 for Wind Speed Retrieval from SAR Images in Coastal Areas. International Journal of Remote Sensing, 40(23), 8844-8860.

Wang, J., dan Sokolov, A. (2020). Feature Selection and Adaptive Threshold ing for Oil Spill Detection in SAR Images. Remote Sensing, 12(23), 392

Fingas, M., & Brown, C. (2014). Review of oil spill remote sensing. Marine Pollution Bulletin, 83(1),9-23.https://doi.org/10.1016/j.marpolbul.2014.03.059

Sulma, S., Insan Nur Rahmi, K., Febrianti, N., Jansen Sitorus Pusat Pemanfaatan Penginderaan Jauh (2019). DETEKSI TUMPAHAN MINYAK MENGGUNAKAN METODE ADAPTIVE THRESHOLD DAN ANALISIS TEKSTUR PADA DATA SAR (Oil Spill Detection using Adaptive Threshold and Texture Analysis Methode on SAR Data). https://doi.org/10.24895/MIG.2019.25-1.925

S. Singha, T. J. Bellerby, dan O. Trieschmann, "Satellite Oil Spill Detection Using Artificial Neural Networks," IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 6, pp. 2355-2363, 2013.

L. Nunziata, A. Buono, C. R. de Macedo, D. Velotto, dan M. Migliaccio, "A sensitivity analysis of dual-polarimetric features to oil spills," IEEE Trans. Geoscience and Remote Sensing, vol. 57, no. 10, pp. 7861-7872, 2019.