High-Resolution Rooftop Solar PV Potential Assessment Using an Open-Source Remote Sensing Data and Cloud Computing: A Case Study in Padang Utara Subdistrict
Main Article Content
Abstract
High-resolution assessment of rooftop solar photovoltaic (PV) potential in urban areas is often constrained by the high cost of commercial data like LiDAR and the computational intensity of analyzing complex geometries. This study develops and applies a novel, fully open-source remote sensing workflow that leverages cloud computing to overcome these limitations. The methodology integrates open-source building and canopy height data to generate a Digital Surface Model (DSM) and introduces a novel Urban Geometric Correction Factor (UGCF). The UGCF combines a multi-temporal Shading Factor, calculated efficiently in Google Earth Engine (GEE), with a Sky View Factor (SVF) to realistically model solar irradiance on individual rooftops. Applied to the complex urban morphology of Padang Utara, Indonesia, the workflow identified significant potential, with 47.17% of viable rooftops classified as 'Optimal' or 'Very Optimal', with a radiation value range of 758.8–848.63 kWh/m²/year. Spatially, the highest potential is concentrated in lower-profile residential areas, not necessarily on the tallest buildings, Critically revealed that internal roof shading is a dominant limiting factor for large buildings. This research presents a cost-effective and replicable methodology, contributing a significant tool for detailed urban solar potential assessment and supporting data-driven sustainable energy planning.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
W. F. Lamb et al., “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018,” Jul. 01, 2021, IOP Publishing Ltd. doi: 10.1088/1748-9326/abee4e.
E. Papadis and G. Tsatsaronis, “Challenges in the decarbonization of the energy sector,” Aug. 15, 2020, Elsevier Ltd. doi: 10.1016/j.energy.2020.118025.
S. Rauner, F. Piontek, B. Soergel, and G. Luderer, “The impact of energy sector pollution on human development and inequality amidst climate change,” Environmental Research Letters, vol. 19, no. 9, Sep. 2024, doi: 10.1088/1748-9326/ad6b39.
K. Obaideen et al., “Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs),” Jan. 01, 2023,
Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/su15021418.
T. M. Kibtiah, G. D. P. Dewi, A. Bainus, M. F. Abdurrahman, D. Rhasan, and K. M. Suitela, “Solar Energy in Indonesia: The Implementation of Sustainable Development Goals for Net Zero Emissions,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755-1315/1324/1/012093.
D. Bernasconi and G. Guariso, “Rooftop PV: Potential and Impacts in a Complex Territory,” Complex Territory. Energies, p. 14, 2021, doi: 10.3390/en.
Z. Zhang et al., “Carbon mitigation potential afforded by rooftop photovoltaic in China,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467-023-38079-3.
D. Pan, Y. Bai, M. Chang, X. Wang, and W. Wang, “The technical and economic potential of urban rooftop photovoltaic systems for power generation in Guangzhou, China,” Energy Build, vol. 277, Dec. 2022, doi: 10.1016/j.enbuild.2022.112591.
D. Triana, I. Garniwa, A. H. Y. Rosadi, and D. N. Martono, “Performance Analysis Simulation of Urban Rooftop Photovoltaic Potential in Jakarta City, Indonesia,” Environmental Research, Engineering and Management, vol. 80, no. 4, pp. 21–38, 2024, doi: 10.5755/j01.erem.80.4.34200.
D. F. Silalahi, A. Blakers, M. Stocks, B. Lu, C. Cheng, and L. Hayes, “Indonesia’s vast solar energy potential,” Energies (Basel), vol. 14, no. 17, Sep. 2021, doi: 10.3390/en14175424.
X. Huang, K. Hayashi, T. Matsumoto, L. Tao, Y. Huang, and Y. Tomino, “Estimation of Rooftop Solar Power Potential by Comparing Solar Radiation Data and Remote Sensing Data—A Case Study in Aichi, Japan,” Remote Sens (Basel), vol. 14, no. 7, Apr. 2022, doi: 10.3390/rs14071742.
O. Bamisile, C. Acen, D. Cai, Q. Huang, and I. Staffell, “The environmental factors affecting solar photovoltaic output,” Feb. 01, 2025, Elsevier Ltd. doi: 10.1016/j.rser.2024.115073.
K. T. N. Ihsan, A. D. Sakti, A. Higuchi, H. Takenaka, and K. Wikantika, “City-Level Solar Photovoltaic Potential Using Integrated Surface Models and Himawari Satellite in Jakarta and Bandung Indonesia,” Energy Build, vol. 319, Sep. 2024, doi: 10.1016/j.enbuild.2024.114552.
H. T. Nguyen and J. M. Pearce, “Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale,” Solar Energy, vol. 86, no. 5, pp. 1245–1260, May 2012, doi: 10.1016/j.solener.2012.01.017.
L. Sander, D. Schindler, and C. Jung, “Application of Satellite Data for Estimating Rooftop Solar Photovoltaic Potential,” Remote Sens (Basel), vol. 16, no. 12, Jun. 2024, doi: 10.3390/rs16122205.
W. Sirko et al., “High-Resolution Building and Road Detection from Sentinel-2,” Sep. 2024, [Online]. Available: http://arxiv.org/abs/2310.11622
J. Tolan et al., “Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar,” Remote Sens Environ, vol. 300, Jan. 2024, doi: 10.1016/j.rse.2023.113888.
M. Amani et al., “Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 5326–5350, 2020, doi: 10.1109/JSTARS.2020.3021052.
Badan Pusat Statistik Kota Padang, “Kecamatan Padang Utara Dalam Angka 2024,” 2024.
I. Fultriasantri and Fajrin, “INTERPRETASI HIBRID CITRA SENTINEL-2A DI KOTA PADANG,” Apr. 2023. doi: https://doi.org/10.35580/jes.v5i2.43339.
WALI KOTA PADANG PROVINSI SUMATERA BARAT, Peraturan Wali Kota Padang Nomor 5 Tahun 2023 Tentang Rencana Detail Tata Ruang Kota Padang Tahun 2023 - 2043. Indonesia, 2023.
QGIS Development Team, “QGIS Geographic Information System,” 2023, QGIS Association: 3.34.12.
Google, “Google Colaboratory,” 2025, Google.
Japan Aerospace Exploration Agency, “Himawari-8/9 L3 Monthly Shortwave Radiation (SWR),” JAXA. Accessed: May 17, 2025. [Online]. Available: https://www.eorc.jaxa.jp/ptree/index.html
BMKG, “Data Suhu Udara Online,” BMKG. Accessed: Aug. 02, 2025. [Online]. Available: https://dataonline.bmkg.go.id/dataonline-home
NASA Prediction of Worldwide Energy Resources (POWER) Project, “Monthly Wind Speed at 10 m,” NASA. Accessed: Jun. 13, 2025. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/
OpenStreetMap contributors, “OpenStreetMap.” Accessed: May 10, 2025. [Online]. Available: https://www.openstreetmap.org/#map=5/-2.55/118.02
K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, and M. S. Islam, “Effects of different environmental and operational factors on the PV performance: A comprehensive review,” Feb. 01, 2022, John Wiley and Sons Ltd. doi: 10.1002/ese3.1043.
E. Skoplaki, A. G. Boudouvis, and J. A. Palyvos, “A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1393–1402, Nov. 2008, doi: 10.1016/j.solmat.2008.05.016.
Z. R. Tahir et al., “Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones,” Sustainability (Switzerland), vol. 14, no. 23, Dec. 2022, doi: 10.3390/su142315810.
J. Adeeb, A. Farhan, and A. Al-Salaymeh, “Temperature effect on performance of different solar cell technologies,” Journal of Ecological Engineering, vol. 20, no. 5, pp. 249–254, 2019, doi: 10.12911/22998993/105543.
H. Waqas, Y. Jiang, J. Shang, I. Munir, and F. U. Khan, “An Integrated Approach for 3D Solar Potential Assessment at the City Scale,” Remote Sens (Basel), vol. 15, no. 23, Dec. 2023, doi: 10.3390/rs15235616.
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sens Environ, vol. 202, pp. 18–27, Dec. 2017, doi: 10.1016/j.rse.2017.06.031.
R. W. Andrews, J. S. Stein, C. Hansen, and D. Riley, “Introduction to the open source PV LIB for python Photovoltaic system modelling package,” in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014, Institute of Electrical and Electronics Engineers Inc., Oct. 2014, pp. 170–174. doi: 10.1109/PVSC.2014.6925501.
T. Hong, M. Lee, C. Koo, K. Jeong, and J. Kim, “Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis,” Appl Energy, vol. 194, pp. 320–332, May 2017, doi: 10.1016/j.apenergy.2016.07.001.
A. D. Sakti et al., “Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia,” Remote Sens (Basel), vol. 14, no. 12, Jun. 2022, doi: 10.3390/rs14122796.
J. Bernard, E. Bocher, G. Petit, and S. Palominos, “Sky view factor calculation in urban context: Computational performance and accuracy analysis of two open and free GIS Tools,” Climate, vol. 6, no. 3, Sep. 2018, doi: 10.3390/cli6030060.
X. Lu, G. Li, L. Zhou, L. Hao, G. Lv, and B. Lin, “Photovoltaic potential estimation for various surface components of urban residential buildings based on Industry Foundation Classes data,” Energy Sci Eng, vol. 10, no. 10, pp. 3741–3765, Oct. 2022, doi: 10.1002/ese3.1253.
G. Desthieux et al., “Solar energy potential assessment on rooftops and facades in large built environments based on lidar data, image processing, and cloud computing. Methodological background, application, and validation in geneva (solar cadaster),” Front Built Environ, vol. 4, Mar. 2018, doi: 10.3389/fbuil.2018.00014.
O. S. Ojo, “Effect of Climate Change on Solar Radiation over a Tropical Region,” in 2021 International Conference on Decision Aid Sciences and Application, DASA 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 332–337. doi: 10.1109/DASA53625.2021.9682407.
H. Ohtake, F. Uno, T. Oozeki, Y. Yamada, H. Takenaka, and T. Y. Nakajima, “Estimation of satellite-derived regional photovoltaic power generation using a satellite-estimated solar radiation data,” Energy Sci Eng, vol. 6, no. 5, pp. 570–583, Oct. 2018, doi: 10.1002/ese3.233.
K. Kawajiri, T. Oozeki, and Y. Genchi, “Effect of temperature on PV potential in the world,” Environ Sci Technol, vol. 45, no. 20, pp. 9030–9035, Oct. 2011, doi: 10.1021/es200635x.
S. Li and J. Shan, “Adaptive Geometric Interval Classifier,” ISPRS Int J Geoinf, vol. 11, no. 8, Aug. 2022, doi: 10.3390/ijgi11080430.
E. G. Ekaputra, E. Stiyanto, and N. A. I. Hasanah, “Surface temperature across land-use change phenomena in Padang, Indonesia,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, May 2021. doi: 10.1088/1755-1315/757/1/012037.
J. Byrne, J. Taminiau, L. Kurdgelashvili, and K. N. Kim, “A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul,” 2015, Elsevier Ltd. doi: 10.1016/j.rser.2014.08.023.
J. Wang, “Solar Shadow Positioning Based on Quadratic Function Fitting,” 2017.
A. Aronescu and J. Appelbaum, “Shading on photovoltaic collectors on rooftops,” Applied Sciences (Switzerland), vol. 10, no. 8, Apr. 2020, doi: 10.3390/APP10082977.