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Abstrak 

Pada penelitian ini menggunakan model matematika berbentuk persamaan diferensial biasa nonlinear 

untuk menggambarkan penyebaran penyakit ISPA. Model matematika yang telah dikontruksi terdiri dari 

lima kompartemen, yaitu populasi rentan, populasi tervaksin, populasi laten, populasi terinfeksi, dan 

populasi sembuh. Hasil analisis dinamik yang telah dilakukan mendapatkan dua titik kesetimbangan model. 

Titik kesetimbangan pertama, yaitu titik kesetimbangan bebas penyakit yang akan bersifat stabil dengan 

kondisi tertentu. Adapun titik kesetimbangan kedua, yaitu titik kesetimbangan endemik yang akan selalu 

stabil asimtotik. Selanjutnya, estimasi parameter dilakukan dengan metode lsqcurvefit, dan diperoleh nilai 

MAPE sebesar 13,10% dari proses fitting data. Hasil estimasi parameter digunakan untuk simulasi dan 

diimplementasikan dalam analisis sensitivitas. Berdasarkan pada analisis sensitivitas parameter diperoleh 

indeks sensitivitas yang paling positif terhadap 𝑅0 yaitu 𝜋 dan 𝛽, sedangkan indeks sensitivitas yang paling

negatif terhadap 𝑅0 adalah 𝜇 dan 𝛼. Selanjutnya, masalah kontrol optimal penyebaran penyakit ISPA

diformulasikan dengan menambahkan dua variabel kontrol, yaitu upaya pengurangan kontak langsung 

antara individu rentan dan individu terinfeksi, dan upaya peningkatan intensitas pengobatan. Masalah 

kontrol optimal diselesaikan dengan prinsip minimum pontryagin. Fungsi tujuan diformulaiskan dalam 

bentuk fungsi Lagrange yang bertujuan untuk meminimumkan populasi laten dan populasi terinfeksi, serta 

meningkatkan jumlah populasi yang tervaksin dan populasi sembuh. Bagian akhir ditampilkan simulasi 

numerik yang telah dikerjakan untuk mendukung hasil analisis, dan terlihat bahwa hasil simulasi telah 

sejalan dengan fungsi tujuan yang telah dikontruksi. 

Kata Kunci: Model ISPA, Titik Kesetimbangan, Kontrol Optimal, Prinsip Pontryagin, Kota Malang 

Abstract 

In this study, a nonlinear ordinary differential equation mathematical model is utilized to describe 

the spread of Acute Respiratory Infections (ARI). The formulated mathematical model consists of five 

compartments: the susceptible population, the vaccinated population, the latent population, the infected 

population, and the recovered population. The dynamic analysis yields two equilibrium points of the model. 

The first equilibrium point, the disease-free equilibrium, is stable with some conditions. The second 

equilibrium point, the endemic equilibrium, is always asymptotically stable. Subsequently, parameter 

estimation is performed using the lsqcurvefit method, resulting in a Mean Absolute Percentage Error 

(MAPE) value of 13.10% from the data fitting data. The estimated parameters are used for simulations and 

implemented in sensitivity analysis. Based on the parameter sensitivity analysis, the most positively 

sensitive indices to 𝑅0 are 𝜋 and 𝛽, whereas the most negatively sensitive indices to reproductive numbers

are 𝜇 and 𝛼. Furthermore, the optimal control problem for ARI transmission is formulated by introducing 

two control variables: (1) efforts to reduce direct contact between susceptible and infected individuals, and 

(2) efforts to increase treatment intensity. The optimal control problem is solved using Pontryagin's

minimum principle. The objective function is formulated as a Lagrange function aimed to minimize the

latent and infected populations while increasing the vaccinated and recovered populations. Finally,
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numerical simulations are presented to support the analytical results, demonstrating that the simulation 

outcomes align with the constructed objective function 

Keywords: ISPA Models, Fixed Points, Optimal Control, Pontryagin Principle, Malang City 

  

1 Pendahuluan 

Infeksi Saluran Pernafasan Akut (ISPA) merupakan infeksi pernafasan yang disebabkan oleh 

jenis bakteri Streptococcus haemophilus atau Staphylococcus aureus. Dewasa ini, ISPA telah 

menjadi penyakit yang secara umum mudah untuk menjangkit masyarakat umum, dan penyakit 

ISPA cenderung menginfeksi para balita dan manula. Infeksi ISPA menjadi salah satu 

penyumbang dan penyebab kematian pada kelompok balita. Secara umum penyakit ISPA terbagi 

menjadi dua kategori, yaitu ISPA bagian atas yang menginfeksi saluran pernapasan daerah hidung, 

dan ISPA bagian bawah yang mencakup bebarapa bagian pernapasan dari atas hingga bagian 

terdalam paru-paru bahkan hingga alveoli. Adapun beberapa infeksi yang termasuk dalam kategori 

ISPA yaitu infeksi sinusitis, pleura, dan rongga telinga bagian tengah [1]. Selain itu, informasi 

penting terkait infeksi ISPA yaitu sifat penyebaran ISPA mudah untuk menular melalui makanan 

ataupun droplet terlebih ketika didukung dengan kondisi sanitasi lingkungan yang kurang baik. 

Mengacu pada data kesehaatan dunia bahwa tahun 2007, penyakit ISPA merupakan 

penyumbang terbesar dalam kasus kematian (morbility) di belahan dunia. Prakiraan empat juta 

individu telah meninggal karena terjangkit ISPA, dan sekitar 98% disebabkan oleh infeksi ISPA 

bagian bawah [2]. Indonesia telah mendeklarasikan bahwa penularan ISPA menjadi permasalahan 

serius yang harus diperhatikan dan perlu dikendalikan di tengah-tengah masyarakat. Berdasarkan 

pada data Kementrian Kesehatan Republik Indonesia hingga bulan Agustus 2023 penyakit ISPA 

di Indonesia telah menyentuh pada angka 1,3 juta kasus. Kota Malang menjadi salah satu kota 

penyumbang kasus ISPA dengan cakupan terbesar di Indonesia. Pada semester pertama tahun 

2023, kasus ISPA di kota Malang terlapor mencapai angka 43.000 jiwa [3]. Memperhatikan hal 

tersebut, maka penyakit ISPA harus diperhatikan dan dikendalikan dengan strategi-strategi yang 

ada agar terwujudnya health society dan nihil kematian yang diakibat oleh infeksi ISPA. 

Fakta dan informasi yang telah diutarakan sebelumnya, salah satu strategi pengendalian yang 

dapat dilakukan dengan pendekatan ilmu matematika. Implementasi ilmu matematika yang dapat 

diterapkan dalam bentuk pemodelan matematika yang dapat merepresentasikan dan memodifikasi 

masalah sosial menjadi bentuk persamaan matematika [4]. Biasanya sistem persamaan matematika 

diformulasikan dalam bentuk persamaan diferensial. Adapun model matematika yang banyak 

digunakan dan sekaligus sebagai pondasi awal untuk merepresentasikan suatu penyebaran 

penyakit, yaitu model dasar 𝑆𝐼𝑅 − Kermack dan McKendrick [5]. Penelitian lain telah mengkaji 

masalah infeksi pernafasan dengan pemodelan matematika untuk mengidentifikasi permasalahan 
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cidera yang terjadi pada paru-paru, sehingga hasilnya digunakan sebagai acuan dalam pengobatan 

infeksi pernafasan [6]. Pada tahun 2020, terdapat penelitian pemodelan penyakit ISPA yang 

memberikan hasil kajian bahwa infeksi ISPA akan berpengaruh terhadap kinerja dan fungsi paru-

paru [7]. Adapun model matematika lain berbentuk 𝑆𝐸𝐻𝐴𝑅 dengan lima kompartemen digunakan 

untuk menggambarkan penyebaran ISPA [2]. Tahun 2022, penelitian lain tentang penyebaran 

penyakit ISPA dengan mempertimbangkan adanya kasus infeksi reguler dan super infeksi 

pernafasan [8]. Pengembangan model penyebaran ISPA delakukan dengan memperhatikan kasus 

infeksi COVID-19 yang dapat berakibat terjadinya co-infection terhadap penyakit lain yang 

berkaitan dengan sistem pernafasan manusia [9]. Pada tahun 2023 kajian tentang identifikasi dari 

berbagai macam faktor-faktor penyebab individu akan terjangkit infeksi Acute Respiratory 

Infection (ARI) [10]. Model matematika penyebaran penyakit ISPA terbaru telah dikaji dan 

dianalisis dengan memperhatikan lokasi dan anatomi dari bakteri penyebab ISPA [1]. 

Secara umum kajian tentang model matematika yang dipaparkan pada paragraph 

sebelumnya terfokus pada analisis dinamika dan perilaku solusi dari suatu sistem yang diguankan 

sebagai strategi untuk mengendalikan infeksi pernafasan. Selain itu, strategi pengendalian yang 

dapat diimplementasikan pada model matematika, yaitu melalui pendekatan teori kontrol optimal 

[11]. Salah satu penelitian yang telah dikaji bahwa kontrol optimal dapat diimplementasikan dalam 

mengendalikan penyebaran penyakit Hepatitis-B [12], dan pengontrolan penyebaran penyakit 

kangker Servik dengan strategi vaksinasi dan skrening [13]. Selain itu, teori kontrol optimal 

digunakan dalam pengontrolan penyebaran penyakit Malaria dengan memperhatikan adanya 

faktor musiman keberadaan nyamuk [14], sedangkan pada tahun 2021 teori kontrol optimal 

digunakan penyakit Ebola dengan usaha pengobatan sebagai kontrolnya [15]. Sebagai tambahan, 

bahwa kontrol optimal dikontruksi untuk mengendalikan penyebaran COVID-19 dengan upaya 

social distancing dan penggunaan masker [16], dan pengontrolan kasus COVID-19 dengan strategi 

yang digunakan terfokus pada kelompok yang tervaksin dan terkarantina [17]. 

Uraian sebelumnya menunjukkan secara jelas pada penelitian bahwa model matematika dan 

masalah kontrol optimal dapat diimplementasikan dalam pengontrolan suatu penyakit. Dengan 

demikian, penelitian ini terfokus pada kontruksi model penyebaran ISPA dengan data infeksi ISPA 

di Kota Malang. Selanjutnya, model ISPA dikembangkan dengan menambahkan variabel kontrol, 

yaitu kontrol berupa upaya untuk pembatasan interaksi individu rentan dan individu terinfeksi, dan 

kontrol berupa usaha peningkatan pengobatan terhadap populasi terinfeksi. Pada penelitian ini 

terbagi menjadi beberapa bagian, yaitu latar belakang, asumsi pemodelan matematika, 

pembahasan analisis dinamika model, penyelesaian masalah kontrol optimal, dan simulasi 

numerik. 
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2 Model Matematika 

Model matematika penyakit ISPA pada penelitian ini dikontruksi denga lima kompartemen, 

yaitu individu yang rentan (𝑆), individu yang tervaksin (𝑉), individu yang terpapar ISPA akan 

tetapi tidak menunjukkan adanya infeksi atau laten (𝐸), individu yang terinfeksi ISPA (𝐼), dan 

individu yang telah sembuh dari ISPA (𝑆). Adapun asumsi yang digunakan untuk mengkontruksi 

model matematika sebagai berikut: 

1. Setiap manusia terkategorisasi sebagai individu yang rentan terinfeksi ISPA. 

2. Pemberian vaksin hanya pada populasi yang rentan saja, dan populasi yang tervaksin telah kebal 

dengan infeksi ISPA. 

3. Laju infeksi penyakit ISPA dalam bentuk fungsi bilinear. 

4. Populasi yang telah dinyatakan sembuh dari infeksi akan memiliki imunitas yang mampu 

melawan infeksi ISPA, sehingga tidak adanya kejadian reinfeksi. 

Selanjutnya, diberikan penjelasan dari variabel dan parameter yang digunakan untuk 

pembentukan diagram kompartemen penyebaran penyakit ISPA. 

Tabel 1. Variabel dan Parameter 

Variabel atau 

Parameter 
Interpretasi 

𝑆(𝑡) Individu yang rentan terinfeksi ISPA pada suatu waktu 𝑡 

𝑉(𝑡) Individu yang telah diberikan vaksin pada suatu waktu 𝑡 

𝐸(𝑡) Individu yang terpapar penyakit ISPA dan belum mengindikasikan adanya 

infeksi pada suatu waktu 𝑡 

𝐼(𝑡) Individu yang telah terinfeksi penyakit ISPA 

𝑅(𝑡) Individu yang telah dinyatakan sembuh dari penyakit ISPA 

𝜋 Laju pertambahan populasi baru 

𝛼 Laju vaksinasi yang diberikan kepada individu rentan 

𝛽 Laju terjangkitnya ISPA antara individu rentan dan individu laten 

𝜎 Laju perpindahan dari individu laten menjadi terinfeksi 

𝛿 Laju perpindahan dari individu tervaksi menjadi individu dengan imunitas 

𝛾 Laju kesembuhan 

𝜀 Laju kematian akibat penyakit ISPA 

𝜇 Laju kematian alami 
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Mengacu pada asumsi-asumsi yang telah dan deskripsi pada Tabel 1, maka diagram 

kompartemen model matematika penyebaran penyakit ISPA ditampilan pada Gambar 1 berikut: 

 

Gambar 1. Diagram Kompartemen Model Penyebaran ISPA 

Berdasarkan diagram kompartemen pada Gambar 1 diperoleh model matematika dalam 

bentuk sistem persamaan diferensial biasa nonlinear berikut: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 − 𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝑆(𝑡) 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝛼𝑆(𝑡) − (𝛿 + 𝜇)𝑉(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜎 + 𝜇)𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸(𝑡) − (𝜀 + 𝛾 + 𝜇)𝐼(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝑉(𝑡) − 𝜇𝑅(𝑡), 

(1) 

untuk mempermudah pembahasan dan penulisan, maka variabel-variabel 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), 

dan 𝑅(𝑡) akan disajikan dalam bentuk 𝑆, 𝑉, 𝐸, 𝐼, 𝑅. 

Selanjutnya, estimasi parameter untuk model (1) dilakukan dengan mengacu pada data 

infeksi ISPA di kota Malang sejak tahun 2015-2023 berikut: 

Tabel 2. Kasus ISPA di Kota Malang 

Tahun Total Kasus ISPA (Jiwa) 

2015 11.004 

2016 55.351 

2017 59.184 

𝑆(𝑡) 𝜋 

𝛽𝑆(𝑡)𝐼(𝑡) 

𝐸(𝑡) 

𝑉(𝑡) 

𝑅(𝑡) 𝐼(𝑡) 
𝜎𝐸(𝑡) 

𝜀𝐼(𝑡) 

𝜇𝑆(𝑡) 

𝜇𝑉(𝑡) 

𝜇𝐸(𝑡) 

𝜇𝑅(𝑡) 

𝛿𝑉(𝑡) 
𝛼𝑆(𝑡) 

𝜇𝐼(𝑡) 

𝛾𝐼(𝑡) 
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Tahun Total Kasus ISPA (Jiwa) 

2018 78.457 

2019 29.526 

2020 33.222 

2021 28.571 

2022 35.055 

2023 43.000 

Proses estimasi parameter menggunakan metode lsqcurvefit dengan nilai awal untuk laju 

pertumbuhan 𝜋 sebesar 150 individu sebagai proses fitting data. Hasil fitting data ditampilkan 

pada Gambar 2 yang menunjukkan perbandingan antara fitting data dan data infeksi ISPA di Kota 

Malang. Proses fitting data terlihat baik dikarenakan diperoleh nilai MAPE sebesar 13,10%. 

 

Gambar 2. Grafik Hasil Fitting Data 

Berdasarkan pada proses fitting data diperoleh nilai-nilai parameter untuk model (1) yang 

ditampilkan pada Tabel 3, dan parameter ini yang digunakan untuk simulasi numerik. 

Tabel 3. Nilai Estimasi Parameter 

Parameter Nilai Estimasi 

𝛼 0,29995 

𝛽 0,29246 

𝜎 0,5385 

𝛿 0,1 
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Parameter Nilai Estimasi 

𝛾 0,38132 

𝜀 0,18552 

𝜇 0,25283 

 

 

3 Hasil dan Pembahasan 

Pembahasan dan analisis model dari sistem persamaan (1) tentang penyakit ISPA terbagi 

menjadi beberapa bagian, yaitu analisis keterbatasan dan kepositifan solusi, kajian titik 

kesetimbangan, bilangan reproduksi dasar, analisis kestabilan lokal titik kesetimbangan, dan 

analisis kesensitivan. 

3.1 Keterbatasan dan Kepositifan Solusi 

Misalkan variabel 𝑁 merupakan notasi totol populasi, maka 𝑁 = 𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅, dan 

berlaku sebagai berikut 

𝑑𝑁

𝑑𝑡
 =

𝑑𝑆

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

 = 𝜋 − 𝛽𝑆𝐼 − 𝛼𝑆 − 𝜇𝑆 + 𝛼𝑆 − 𝛿𝑉 − 𝜇𝑉 + 𝛽𝑆𝐼 − 𝜎𝐸 − 𝜇𝐸 + 𝜎𝐸 − 𝜀𝐼 

−𝛾𝐼 − 𝜇𝐼 + 𝛾𝐼 + 𝛿𝑉 − 𝜇𝑅 

 = 𝜋 − 𝜀𝐼 − 𝜇(𝑆 + 𝑉 + 𝐸 + 𝐼 + 𝑅) 

 = 𝜋 − 𝜀𝐼 − 𝜇𝑁 

≤ 𝜋 − 𝜇𝑁. (2) 

Terlihat bahwa persamaan (2) merupakan persamaan differensial biasa, dan apabila diselesaikan 

dengan faktor pengintegralan, maka diperoleh solusi berikut 

𝑁(𝑡) ≤
𝜋

𝜇
+ 𝑐𝑒−𝜇𝑡 . (3) 

Selanjutnya, misal solusi 𝑁(𝑡) pada persamaan (3) diberikan nilai awal 𝑡 = 0, maka diperoleh 

solusi khusus berbentuk 

𝑁(𝑡) ≤
𝜋

𝜇
+ (𝑁(0) −

𝜋

𝜇
) 𝑒−𝜇𝑡. (4) 

Akibatnya untuk 𝑡 → ∞ pada persamaan (4) akan berlaku lim
𝑡→∞ 

𝑁(𝑡) ≤
𝜋

𝜇
. Oleh karena itu, solusi 

dari model penyebaran penyakit ISPA akan terbatas oleh suatu nilai 
𝜋

𝜇
 pada daerah 

Ψ = {(𝑆, 𝑉, 𝐸, 𝐼, 𝑅)|𝑁(𝑡) ≤
𝜋
𝜇
}. (5) 
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Terorema 1. Misalkan berlaku 𝑆(0) ≥ 0, 𝑉(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0, maka semua 

solusi sistem persamaan (1) akan bernilai positif untuk setiap 𝑡 ≥ 0. 

Bukti. Kepositifan solusi dari sistem persamaan (1) dapat dibuktikan dengan analogi pembuktian 

pada penelitian [18], dan ditampilkan sebagai berikut 

𝑑𝑆

𝑑𝑡
|
𝑆=0

= 𝜋 − 𝛽𝑆𝐼 − 𝛼𝑆 − 𝜇𝑆 = 𝜋 > 0,
𝑑𝑉

𝑑𝑡
|
𝑉=0

= 𝛼𝑆 − 𝛿𝑉 − 𝜇𝑉 = 𝛼𝑆 ≥ 0 

𝑑𝐸

𝑑𝑡
|
𝐸=0

= 𝛽𝑆𝐼 − 𝜎𝐸 − 𝜇𝐸 = 𝛽𝑆𝐼 ≥ 0,
𝑑𝐼

𝑑𝑡
|
𝐼=0

= 𝜎𝐸 − 𝜀𝐼 − 𝛾𝐼 − 𝜇𝐼 = 𝜎𝐸 ≥ 0 

𝑑𝑅

𝑑𝑡
|
𝑅=0

= 𝛾𝐼 + 𝛿𝑉 − 𝜇𝑅 = 𝛾𝐼 + 𝛿𝑉 ≥ 0. 

(6) 

Terlihat jelas dari persamaan (6) bahwa keseluruhan sistem memberikan hasil selalu lebih besar 

dari nol untuk setiap waktu, artinya semua bernilai non negatif. 

3.2 Titik Kesetimbangan Model 

Titik kesetimbangan sistem persamaan (1) diperoleh ketika sistem persamaan memenuhi 

kondisi 
𝑑𝑆

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. Pada analisis titik kesetimbangan terbagi menjadi dua 

bagian, yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Titik 

kesetimbangan bebas penyakit terjadi ketika tidak adanya infeksi ISPA pada kelompok populasi, 

artinya 𝐼 = 0. Apabila 𝐼 = 0, maka titik kesetimbangan bebas penyakit sistem persamaan (1) 

diperoleh 

𝐸0(𝑆, 𝑉, 𝐸, 𝐼, 𝑅) = (
𝜋

𝛼 + 𝜇
,

𝛼𝜋

(𝛿 + 𝜇)(𝛼 + 𝜇)
, 0,0,

𝛿𝛼𝜋

𝜇(𝛿 + 𝜇)(𝛼 + 𝜇)
). (7) 

Selanjutnya mengacu titik kesetimbangan pada persamaan (7) dapat ditentukan bilangan 

reproduksi dasar dari sistem persamaan (1). Bilangan reproduksi dasar merupakan nilai ambang 

batas yang dapat menunjukkan adanya infeksi atau tidak. Pada penelitian ini, bilangan reproduksi 

dasar ditentukan dengan metode Next Generation Matrix (NGM) [19], [20], dan diperoleh 

bilangan reproduksi dasar 𝑅0 sebagai berikut 

𝑅0 =
𝜎𝛽𝜋

(𝜎 + 𝜇)(𝛼 + 𝜇)(𝜀 + 𝛾 + 𝜇)
. (8) 

Selain titik kesetimbangan bebas penyakit, model penyebaran penyakit ISPA memiliki titik 

kesetimbangan endemik. Titik kesetimbangan endemik didapatkan ketika 𝐼 ≠ 0, artinya infeksi 

penyakit ISPA menyebar secara luas. Ketika 𝐼 ≠ 0, maka sistem persamaan (1) memiliki titik 

kesetimbangan endemik berikut 
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𝑆∗ =
𝜋

(𝑅0 − 1)(𝛼 + 𝜇) + 𝛼 + 𝜇
, 𝑉∗ =

𝛼𝜋

(𝛿 + 𝜇)((𝑅0 − 1)(𝛼 + 𝜇) + 𝛼 + 𝜇)
, 

𝐸∗ =
1

𝜎 + 𝜇
(

𝜋(𝑅0 − 1)(𝛼 + 𝜇)

(𝑅0 − 1)(𝛼 + 𝜇) + 𝛼 + 𝜇
) , 𝐼∗ =

(𝑅0 − 1)(𝛼 + 𝜇)

𝛽
, 𝑅∗ =

𝛾𝐼∗ + 𝛿𝑉∗

𝜇
. 

 

3.3 Analisis Kestabilan Lokal Titik Kesetimbangan 

Analisis kestabilan lokal model penyebaran penyakit ISPA dapat ditentukan dengan 

linearisasi sistem persamaan (1) dan proses ini menghasilkan matriks Jacobian. Adapun matriks 

Jacobian yang bersesuaian dengan sistem persamaan (1) berbentuk 

𝐽 =

[
 
 
 
 
−(𝛽𝐼 + 𝛼 + 𝜇) 0 0 −𝛽𝑆 0

𝛼 −(𝛿 + 𝜇) 0 0 0
𝛽𝐼 0 −(𝜎 + 𝜇) 𝛽𝑆 0
0 0 𝜎 −(𝜀 + 𝛾 + 𝜇) 0
0 𝛿 0 𝛾 −𝜇]

 
 
 
 

 . (9) 

Kestabilan lokal titik kesetimbangan bebas penyakit diperoleh dengan substitusi titik tetap 

bebas penyakit pada matriks Jacobian (9), dan diperoleh matriks Jacobian untuk titik 

kesetimbangan bebas penyakit berikut 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 −(𝛼 + 𝜇) 0 0 −

𝛽𝜋

𝛼 + 𝜇
0

𝛼 −(𝛿 + 𝜇) 0 0 0

0 0 −(𝜎 + 𝜇)
𝛽𝜋

𝛼 + 𝜇
0

0 0 𝜎 −(𝜀 + 𝛾 + 𝜇) 0
0 𝛿 0 𝛾 −𝜇]

 
 
 
 
 
 
 

 . (10) 

Langkah selanjutnya adalah menentukan nilai eigen yang bersesuaian dengan matriks Jacobian 

(10). Nilai eigen diperoleh dengan menyelesaikan persamaan det(𝐽(𝐸0) − 𝜆𝐼) = 0. Melalui 

kaidah ekspansi kofaktor matriks, diperoleh persamaan karakteristik yang bersesuaian berikut 

(−(𝛼 + 𝜇) − 𝜆)(−(𝛿 + 𝜇) − 𝜆)(−𝜇 − 𝜆)(𝜆2 + 𝑏1𝜆 + 𝑏2), (11) 

dengan 

𝑏1 =  𝜎 + 𝜀 + 𝛾 + 2𝜇 

𝑏2 = (𝜎 + 𝜇)(𝜀 + 𝛾 + 𝜇) − 𝜎𝛽𝜋. 

Berdasarkan pada persamaan karakteristik (11), diperoleh nilai-nilai eigen secara terperinci 

𝜆1 = −(𝛼 + 𝜇), 𝜆2 = −(𝛿 + 𝜇), 𝜆3 = −𝜇, (12) 

dan 

𝜆4,5 =
−(𝜎 + 𝜀 + 𝛾 + 2𝜇) ± √(𝜎 + 𝜀 + 𝛾 + 2𝜇)2 − 4((𝜎 + 𝜇)(𝜀 + 𝛾 + 𝜇) − 𝜎𝛽𝜋)

2
. 

(13) 
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Apabila persamaan (13) dilakukan analisis untuk kestabilan sistem, maka nilai 𝜆4 dan 𝜆5 akan 

bernilai negatif ketika nilai diskrimannya 𝐷 ≥ 0, dan (𝜎 + 𝜇)(𝜀 + 𝛾 + 𝜇) > 𝜎𝛽𝜋. Artinya kondisi 

ini disebut sebagai syarat kestabilan lokal untuk titik kesetimbangan bebas penyakit, yaitu 

𝐷 ≥ 0 , dan   𝜋 <
(𝜎 + 𝜇)(𝜀 + 𝛾 + 𝜇)

𝜎𝛽
. (14) 

Adapun kestabilan titik endemik dapat diketahui dengan beranalogi pada penentuan 

kestabilan titik bebas penyakit. Sehingga diperoleh matriks Jacobian yang bersesuaian dengan titik 

endemik, yaitu 

𝐽(𝐸∗) =

[
 
 
 
 
−(𝛽𝐼∗ + 𝛼 + 𝜇) 0 0 −𝛽𝑆∗ 0

𝛼 −(𝛿 + 𝜇) 0 0 0

𝛽𝐼∗ 0 −(𝜎 + 𝜇) 𝛽𝑆∗ 0

0 0 𝜎 −(𝜀 + 𝛾 + 𝜇) 0
0 𝛿 0 𝛾 −𝜇]

 
 
 
 

 , (15) 

dengan 

𝑆∗ =
𝜋

(𝑅0 − 1)(𝛼 + 𝜇) + 𝛼 + 𝜇
, 

𝐼∗ =
(𝑅0 − 1)(𝛼 + 𝜇)

𝛽
. 

Berdasarkan pada matriks Jacobian (15), dan menyelesaikan persamaan det(𝐽(𝐸∗) − 𝜆𝐼) = 0 

didapatkan persamaan karakteristik yang bersesuaian dalam bentuk derajat lima. Dikarenakan 

berderajat lima, maka akar-akar persamaan karakteristik yang bersesuaian dengan matriks 

Jacobian (15) sulit ditentukan secara analitik. Oleh karena itu, proses analisis dilakukan dengan 

simulasi numerik pada tiga bidang fase 𝑆, 𝐸, dan 𝐼, sebagai berikut 

 

Gambar 3. Bidang Fase Pada Populasi 𝑆, 𝐸, dan 𝐼 
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Pada Gambar 3 menampilkan bahwa hasil simulasi pada tiga bidang fase dengan beberapa nilai 

awal yang berbeda menuju titik kesetimbangan yaitu 𝐸∗(𝑆∗, 𝐸∗, 𝐼∗) = (2,706; 3,147; 187,651; ), 

dan nilai 𝑅0 = 8,117. Artinya, simulasi ini menunjukkan bahwa solusi akan konvergen menuju 

titik kesetimbangan endemik, sehingga titik kesetimbangan endemik bersifat stabil asimtotik. 

3.4 Analisis Sensitivitas Parameter 

Analisis sensitivitas parameter dikaji untuk melihat seberapa besar pengaruhnya parameter 

terhadap suatu model yang dianalisis [19]. Indeks sensitivitas parameter terhadap bilangan 

reproduksi dasar dapat dicari dengan 

𝐶𝜌
𝑅0 =

𝜕𝑅0

𝜕𝜌
(

𝜌

𝑅0
), (16) 

Pada persamaan (16) notasi 𝜌 merupakan parameter yang terlibat pada bilangan roproduksi dasar, 

dan persamaan bilangan reproduksi dasar mengacu pada persamaan (8). Selanjutnya dilakukan 

evaluasi dengan rumus pada persamaan (16), dan mengacu nilai-nilai pada Tabel 3 diperoleh nilai 

indeks sensitivitas parameter terhadap 𝑅0 untuk kasus model penyebaran penyakit ISPA. Indeks 

sensitivitas ditampilkan dalam bentuk grafik bar yang disajikan pada Gambar 4. 

 

Gambar 4. Indeks Sensitivitas Parameter 

Berdasarkan pada Gambar 4 terlihat bahwa indeks sensitivitas yang paling positif adalah 𝜋 dan 𝛽, 

sedangkan yang paling negatif adalah 𝜇, dan diikuti oleh parameter 𝛼. Pada kasus indeks 

sensitivitas positif memberikan makna bahwa ketika dilakukan pengurangan nilai parameternya, 

maka nilai bilangan reproduksi dasar akan ikut berkurang, atau sebaliknya. Sedangkan indeks 

sensitivitas negatif berlaku sebaliknya, yaitu ketika diturunkan nilai parameternya, maka nilai 

bilangan reproduksi dasar akan bertambah, atau sebaliknya. Misalnya, mengacu pada indeks 

sensitivitas untuk parameter 𝛽, ketika nilai parameter 𝛽 diturunkan, maka diikuti oleh penurunan 
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nilai 𝑅0. Jika nilai 𝑅0 turun, artinya populasi yang terinfeksi (𝐼) juga akan berkurang, dan akibatnya 

tidak terjadi endemik. Selanjutnya, jika dipandang indeks sensitivitas dari parameter 𝛼, maka akan 

dapat diinterpretasikan bahwa meskipun nilai diturunkan ataupun dinaikkan maka tidak terlalu 

signifikan mempengaruhi populasi terinfeksi. Sebagai ilustrasi pengaruhnya parameter 𝛽 dan 𝛼 

dapat dilihat pada Gambar 5.  

  

Gambar 5. Kesensitivan Parameter 𝛽 dan 𝛼 terhadap perilaku solusi populasi terinfeksi  

 

4 Masalah Kontrol Optimal 

Analisis kontrol optimal diterapkan sebagai langkah pengendalian penyebaran penyakit 

ISPA. Masalah kontrol optimal yang dikontruksi terhadap model (1) bertujuan untuk 

meminimumkan populasi laten dan meminimumkan populasi terinfeksi. Besar harapannya ketika 

populasi laten dan terinfeksi minimum, maka tidak akan terjadi endemik. Dilain sisi, kontrol 

optimal ini bertujuan memaksimumkan populasi tervaksin dan populasi yang sembuh. 

Selanjutnya, berdasarkan pada hubungan antara biaya edukasi dan biaya pengobatan dengan 

jumlah individu yang laten dan terinfeksi berbentuk tidak linear, maka dipilih fungsi kuadratik 

untuk meminimumkan populasi laten dan terinfeksi, sehingga fungsi tujuan dibentuk dalam fungsi 

Lagrange dengan asumsi tanpa adanya biaya di akhir waktu. 

𝑀𝑖𝑛 𝐽(𝑢1, 𝑢2) = ∫(𝐸(𝑡) + 𝐼(𝑡) − 𝑉(𝑡) − 𝑅(𝑡) + 𝐴𝑢1
2(𝑡) + 𝐵𝑢2

2(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

, (17) 

dengan variabel kontrol terletak pada interval 0 ≤ 𝑢1(𝑡) ≤ 1, 0 ≤ 𝑢2(𝑡) ≤ 1, dan 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓, 

serta bobot 𝐴, 𝐵 selalu bernilai positif. Selanjutnya, variabel kontrol yang diperkenalkan digunakan 

dalam masalah kontrol optimal, yaitu variabel 𝑢1(𝑡) yang merepresentasikan tentang usaha 

edukasi dengan terfokus pada interaksi antara individu rentan dan individu terinfeksi. Variabel 
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kontrol 𝑢2(𝑡) merepresentasikan usaha pengobatan secara intensif terhadap individu yang telah 

terinfeksi ISPA. Oleh karena itu, formulasi masalah kontrol optimal dapat dibangun mellaui 

persamaan (1) dengan menambahkan variabel kontrol 𝑢1(𝑡) dan 𝑢2(𝑡), diperoleh sistem 

persamaan dengan variabel kontrol sebagai berikut 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝑆(𝑡) 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝛼𝑆(𝑡) − (𝛿 + 𝜇)𝑉(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝜎 + 𝜇)𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸(𝑡) − (𝜀 + 𝛾 + 𝜇)𝐼(𝑡) − 𝑢2𝐼(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝑉(𝑡) − 𝜇𝑅(𝑡) + 𝑢2𝐼(𝑡) 

(18) 

Adapun langkah penyelesaian dan analisis masalah kontrol optimal dari sistem persamaan 

(17) dan (18) dapat diselesaikan dengan prinsip minimum Pontryagin. Langkah awal dalam prinsip 

Pontryagin dengan membentuk fungsi Hamiltonian yang bersesuaian dengan persamaan (17) dan 

(18). Fungsi Hamiltonial diformulasikan dengan bentuk 

𝐻 = 𝐸(𝑡) + 𝐼(𝑡) − 𝑉(𝑡) − 𝑅(𝑡) + 𝐴𝑢1
2(𝑡) + 𝐵𝑢2

2(𝑡)

+ 𝜓𝑆 (𝜋 − (1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝑆(𝑡))

+ 𝜓𝑉(𝛼𝑆(𝑡) − (𝛿 + 𝜇)𝑉(𝑡))

+ 𝜓𝐸 ((1 − 𝑢1(𝑡))𝛽𝑆(𝑡)𝐼(𝑡) − (𝜎 + 𝜇)𝐸(𝑡))

+ 𝜓𝐼(𝜎𝐸(𝑡) − (𝜀 + 𝛾 + 𝜇)𝐼(𝑡) − 𝑢2𝐼(𝑡))

+ 𝜓𝑅(𝛾𝐼(𝑡) + 𝛿𝑉(𝑡) − 𝜇𝑅(𝑡) + 𝑢2𝐼(𝑡)), 

(19) 

dengan variabel 𝜓𝑖 , 𝑖 = 𝑆, 𝑉, 𝐸, 𝐼, 𝑅 disebut variabel-variabel adjoind (costate). 

Berdasarkan pada prinsip Pontryagin, fungsi Hamiltonian (19) yang telah dibentuk agar 

optimal harus memenuhi kondisi stasioner, kondisi state, dan kondisi costate. 

4.1 Kondisi Stasioner 

Kondisi stasioner dapat diperoleh dengan menurunkan fungsi Hamiltonian secara parsial 

terhadap variabel 𝑢1(𝑡) dan 𝑢2(𝑡), dan memenuhi 
𝜕𝐻

𝜕𝑢𝑖
= 0. Diferensiasi fungsi Hamiltonian 

terhadap 𝑢1 diperlihatkan 

𝜕𝐻

𝜕𝑢1
= 2𝐴𝑢1 + 𝜓𝑆(𝛽𝑆(𝑡)𝐼(𝑡)) − 𝜓𝐸(𝛽𝑆(𝑡)𝐼(𝑡)) = 0, 

sehingga diperoleh kondisi stasioner 
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𝑢1(𝑡) =
𝛽𝑆(𝑡)𝐼(𝑡)(𝜓𝐸 − 𝜓𝑆)

2𝐴
. 

Adapun diferensiasi terhadap 𝑢2 ditunjukkan 

𝜕𝐻

𝜕𝑢2
= 2𝐵𝑢2 − 𝜓𝐼𝐼(𝑡) + 𝜓𝑅𝐼(𝑡) = 0, 

diperoleh 

𝑢2(𝑡) =
𝐼(𝑡)(𝜓𝐼 − 𝜓𝑅)

2𝐵
. 

Dikarenakan variabel-variabel kontrol berada pada interval [0,1], maka berlaku kondisi optimal 

untuk varaibel kontrol berikut 

𝑢1
∗(𝑡) = min {𝑚𝑎𝑘 (0,

𝛽𝑆(𝑡)𝐼(𝑡)(𝜓𝐸 − 𝜓𝑆)

2𝐴
) , 1} 

𝑢2
∗(𝑡) = min {𝑚𝑎𝑘 (0,

𝐼(𝑡)(𝜓𝐼 − 𝜓𝑅)

2𝐵
) , 1}. 

4.2 Kondisi State 

Kondisi state merupakan kondisi kendala yang akan terlibat pada suatu masalah kontrol 

optimal. Kendala yang terdapat pada penelitian ini merupakan sistem (9) dengan kondisi awal 

𝑆(0) = 𝑆0, 𝑉(0) = 𝑉0, 𝐸(0) = 𝐸0, 𝐼(0) = 𝐼0, dan 𝑅(0) = 𝑅0. 

4.3 Kondisi Costate 

Kondisi costate dapat diperoleh ketika fungsi Hamiltonian diturunkan terhadap variabel-

variabel state dan kemudian dikalikan dengan negatif satu, ditunjukkan sebagai berikut: 

𝑑𝜓𝑆

𝑑𝑡
= −

𝑑𝐻

𝑑𝑆
= −{𝜓𝑆 (−(1 − 𝑢1(𝑡))𝛽𝐼 − (𝛼 + 𝜇)) + 𝜓𝑉(𝛼) + 𝜓𝐸 ((1 − 𝑢1(𝑡))𝛽𝐼)} 

𝑑𝜓𝑉

𝑑𝑡
= −

𝑑𝐻

𝑑𝑉
= −{−1 + 𝜓𝑉(−(𝛿 + 𝜇)) + 𝜓𝑅(𝛿)} 

𝑑𝜓𝐸

𝑑𝑡
= −

𝑑𝐻

𝑑𝐸
= −{1 + 𝜓𝐸(−(𝜎 + 𝜇)) + 𝜓𝐼(𝜎)} 

𝑑𝜓𝐼

𝑑𝑡
= −

𝑑𝐻

𝑑𝐼
= − {1 + 𝜓𝑆(−(1 − 𝑢1(𝑡))𝛽𝑆) + 𝜓𝐸 ((1 − 𝑢1(𝑡))𝛽𝑆)

+ 𝜓𝐼(−(𝜀 + 𝛾 + 𝜇 + 𝑢2)) + 𝜓𝑅(𝛾 + 𝑢2(𝑡))} 

𝑑𝜓𝑅

𝑑𝑡
= −

𝑑𝐻

𝑑𝑅
= −{−1 + 𝜓𝑅(−𝜇)}, 

dengan kondisi transversal 𝜓𝑆(𝑇) = 𝜓𝑉(𝑇) = 𝜓𝐸(𝑇) = 𝜓𝐼(𝑇) = 𝜓𝑅(𝑇) = 0. 
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5 Simulasi Numerik Masalah Kontrol Optimal 

Simulasi numerik ditampilkan sebagai pendukung dari hasil analisis yang telah dikerjakan. 

Penyelesaian numerik dikerjakan dengan metode Sweep Maju-Mundur, dan berbantuan software 

MATLAB. Pada simulasi numerik digunakan parameter pada Tabel 3, dengan nilai awal 𝑆(0) =

100, 𝑉(0) = 10, 𝐸(0) = 1, 𝐼(0) = 𝑅(0) = 0, dan nilai bobot 𝐴 = 0,05, dan 𝐵 = 0,075. Hasil 

simulasi menampilkan perjalanan solusi tanpa dan dengan kontrol sebagai berikut 

 

Gambar 6. Perbandingan Simulasi Tanpa dan Dengan Kontrol Populasi Rentan dan Tervaksin 

Grafik pada Gambar 6 merepresentasikan perjalanan populasi dengan dan tanpa penerapan 

kontrol. Dinamika solusi populasi rentan (𝑆) tanpa kontrol digambarkan dengan garis merah. 

Populasi rentan mengalami penurunan signifikan mulai awal waktu dan mencapai kestabilan 

dengan posisi yang sangat rendah dalam waktu singkat. Sebaliknya, dinamika solusi dengan 

kontrol digambarkan dengan garis biru, penurunan populasi terjadi lebih lambat serta 

kestabilannya lebih tinggi dibandingkan dengan populasi rentan tanpa kontrol. Grafik kedua dari 

Gambar 6 merepresentasikan perjalanan solusi populasi tervaksin (𝑉). Simulasi tanpa kontrol 

menunjukkan peningkatan secara cepat di awal waktu hingga mencapai puncak tertinggi, 

kemudian diikuti penurunan secara perlahan hingga stabil. Sedangkan perjalanan solusi dengan 

kontrol, perubahan populasi tervaksin mencapai puncak dan stabilnya berada di atas solusi tanpa 

kontrol. Berdasarkan simulasi terlihat bahwa dengan kontrol pengendalian interaksi antara 

individu rentan dan individu terinfeksi dapat mempertahankan jumlah populasi rentan meskipun 

tidak signifikan. 



212   

 

Dinamika Solusi dan Kontrol Optimal Model Penyakit ISPA di Kota Malang 

 

Gambar 7. Perbandingan Simulasi Tanpa dan Dengan Kontrol Populasi Laten dan Terinfeksi 

Gambar 7 menampilkan perjalanan solusi populasi laten dan populasi terinfeksi. 

Berdasarkan grafik terlihat menampilkan dua skenario, yaitu simulasi tanpa dan dengan kontrol 

terhadap populasi laten (𝐸) dan terinfeksi (𝐼). Populasi laten tanpa kontrol ditunjukkan dengan 

grafik warna merah, terlihat bahwa perjalanan populasi laten meningkat tajam dari awal waktu 

hingga stabil dari waktu ke-5 hingga akhir simulasi mencapai angka sekitar 200. Begitu juga, 

simulasi dengan kontrol menunjukkan populasi laten meningkat mulai dari awal waktu, dan 

terlihat grafik dengan kontrol lebih rendah dibandingkan tanpa kontrol. Hal ini merepresentasikan 

bahwa efek pembatasan populasi tidak signifikan pengaruh terhadap populasi laten. Adapun grafik 

yang bawah merepresentasikan populasi terinfeksi tanpa kontrol, dan menunjukkan adanya 

peningkatan sangat signifikan dari permulaan waktu simulasi hingga akhir waktu simulasi, dan 

konvergen  di angka sekitar 125. Sedangkan simulasi dengan kontrol menampilkan bahwa 

populasi terinfeksi meningkat di awal waktu, dan konvergen pada angka yang jauh lebih rendah 

dibandingkan dengan nilai konvergensi tanpa kontrol. Hal ini memperlihatkan bahwa peningkatan 

pengobatan memberikan pengaruh signifikan dalam mengendalikan populasi terinfeksi. 

 

Gambar 8. Perbandingan Simulasi Tanpa dan Dengan Kontrol Populasi Sembuh 
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Pada Gambar 8 menampilkan hasil simulasi yang merepresentasikan dinamika populasi 

sembuh setelah diberikan kontrol meningkat jauh dibandingkan tanpa kontrol. Artinya, skenario 

kontrol yang diberikan pada model matematika mampu meningkatkan populasi yang sembuh, dan 

efektivitas kontrol pemulihan populasi yang terinfeksi berjalan dengan baik. 

 

Gambar 9. Simulasi Profile Kontrol 𝑢1(𝑡) dan 𝑢2(𝑡) 

Grafik pada Gambar 9 menunjukkan perjalanan dari profile kontrol 𝑢1 dan 𝑢2 terhadap 

waktu. Simulasi bagian (a) menunjukkan bahwa proses kontrol 𝑢1 diawal waktu sedikit usaha yang 

dilakukan kemudian meningkat hingga waktu ke-35, hingga akhirnya menurun secara perlahan 

hingga di akhir simulasi. Adapun kontrol 𝑢2, terlihat dominan mulai diawal waktu hingga akhir 

waktu ke-50. Artinya bahwa dominasi kontrol 𝑢2 dapat diterapkan dalam penanganan penyebaran 

ISPA, dikarenakan kontrol pengobatan terlihat intensif dan cenderung lebih cepat dalam 

penurunan jumlah populasi yang terinfeksi dan meningkatkan laju kesembuhan. Hal ini 

menunjukkanbahwa usaha pengobatan lebih baik secara simulasi dibandingkan dengan usaha 

pembatasan interaksi individu rentan dengan individu terinfeksi.  

 

6 Simpulan 

Pada penelitian ini menghasilkan model penyebaran ISPA dengan mempetimbangkan 

adanya proses vaksinasi. Analisis dinamik menunjukkan bahwa model 𝑆𝑉𝐸𝐼𝑅 memiliki dua titik 

kesetimbangan, yaitu titik bebas penyakit yang bersifat stabil lokal dengan syarat 𝐷 ≥

0 , dan   𝜋 <
(𝜎+𝜇)(𝜀+𝛾+𝜇)

𝜎𝛽
. Titik tetap endemik bersifat stabil asimtotik berdasarkan pada simulasi 

pada tiga bidang fase 𝑆𝐸𝐼, dan berdasarkan simulasi diperoleh nilai bilangan reproduksi dasar 

𝑅0 = 8,117. Analisis sensitivitas menunjukkan bahwa indeks sensitivitas yang paling positif 

terhadap bilangan 𝑅0 adalah parameter 𝜋 dan 𝛽. Selanjutnya, penelitian ini menghasilkan analisis 
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masalah kontrol optimal dengan dua variabel kontrol, yaitu kontrol berupa usaha pembatasan 

interaksi individu rentan dan individu terinfeksi, serta kontrol berupa upaya pengobatan intensif 

terhadap populasi terinfeksi. Berdasarkan pada analisis dan simulasi numerik yang dilakukan telah 

sesuai dengan formula fungsi tujuan yang dibentuk. Hal ini menginterpretasikan bahwa 

pengobatan secara intensif lebih berpengaruh dibandingkan dengan usaha pembatasan interaksi 

antara individu rentan dan individu terinfeksi.  Model matematika yang telah dikaji dapat diperluas 

dengan mempertimbangkan efek tersaturasi pada kejadian infeksi penyakit ISPA, atau dapat 

dikembangkan dengan penambahan efek gangguan (noise) melalui pendekatan persamaan 

diferensial stokastik.  
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