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Abstrak

Pada penelitian ini menggunakan model matematika berbentuk persamaan diferensial biasa nonlinear
untuk menggambarkan penyebaran penyakit ISPA. Model matematika yang telah dikontruksi terdiri dari
lima kompartemen, yaitu populasi rentan, populasi tervaksin, populasi laten, populasi terinfeksi, dan
populasi sembuh. Hasil analisis dinamik yang telah dilakukan mendapatkan dua titik kesetimbangan model.
Titik kesetimbangan pertama, yaitu titik kesetimbangan bebas penyakit yang akan bersifat stabil dengan
kondisi tertentu. Adapun titik kesetimbangan kedua, yaitu titik kesetimbangan endemik yang akan selalu
stabil asimtotik. Selanjutnya, estimasi parameter dilakukan dengan metode /sqcurvefit, dan diperoleh nilai
MAPE sebesar 13,10% dari proses fitting data. Hasil estimasi parameter digunakan untuk simulasi dan
diimplementasikan dalam analisis sensitivitas. Berdasarkan pada analisis sensitivitas parameter diperoleh
indeks sensitivitas yang paling positif terhadap R yaitu  dan (8, sedangkan indeks sensitivitas yang paling
negatif terhadap R, adalah u dan a. Selanjutnya, masalah kontrol optimal penyebaran penyakit ISPA
diformulasikan dengan menambahkan dua variabel kontrol, yaitu upaya pengurangan kontak langsung
antara individu rentan dan individu terinfeksi, dan upaya peningkatan intensitas pengobatan. Masalah
kontrol optimal diselesaikan dengan prinsip minimum pontryagin. Fungsi tujuan diformulaiskan dalam
bentuk fungsi Lagrange yang bertujuan untuk meminimumkan populasi laten dan populasi terinfeksi, serta
meningkatkan jumlah populasi yang tervaksin dan populasi sembuh. Bagian akhir ditampilkan simulasi
numerik yang telah dikerjakan untuk mendukung hasil analisis, dan terlihat bahwa hasil simulasi telah
sejalan dengan fungsi tujuan yang telah dikontruksi.

Kata Kunci: Model ISPA, Titik Kesetimbangan, Kontrol Optimal, Prinsip Pontryagin, Kota Malang

Abstract

In this study, a nonlinear ordinary differential equation mathematical model is utilized to describe
the spread of Acute Respiratory Infections (ARI). The formulated mathematical model consists of five
compartments: the susceptible population, the vaccinated population, the latent population, the infected
population, and the recovered population. The dynamic analysis yields two equilibrium points of the model.
The first equilibrium point, the disease-free equilibrium, is stable with some conditions. The second
equilibrium point, the endemic equilibrium, is always asymptotically stable. Subsequently, parameter
estimation is performed using the Isqcurvefit method, resulting in a Mean Absolute Percentage Error
(MAPE) value of 13.10% from the data fitting data. The estimated parameters are used for simulations and
implemented in sensitivity analysis. Based on the parameter sensitivity analysis, the most positively
sensitive indices to Ry are w and 5, whereas the most negatively sensitive indices to reproductive numbers
are u and a. Furthermore, the optimal control problem for ARI transmission is formulated by introducing
two control variables: (1) efforts to reduce direct contact between susceptible and infected individuals, and
(2) efforts to increase treatment intensity. The optimal control problem is solved using Pontryagin's
minimum principle. The objective function is formulated as a Lagrange function aimed to minimize the
latent and infected populations while increasing the vaccinated and recovered populations. Finally,
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numerical simulations are presented to support the analytical results, demonstrating that the simulation
outcomes align with the constructed objective function

Keywords: ISPA Models, Fixed Points, Optimal Control, Pontryagin Principle, Malang City

1 Pendahuluan

Infeksi Saluran Pernafasan Akut (ISPA) merupakan infeksi pernafasan yang disebabkan oleh
jenis bakteri Streptococcus haemophilus atau Staphylococcus aureus. Dewasa ini, ISPA telah
menjadi penyakit yang secara umum mudah untuk menjangkit masyarakat umum, dan penyakit
ISPA cenderung menginfeksi para balita dan manula. Infeksi ISPA menjadi salah satu
penyumbang dan penyebab kematian pada kelompok balita. Secara umum penyakit ISPA terbagi
menjadi dua kategori, yaitu ISPA bagian atas yang menginfeksi saluran pernapasan daerah hidung,
dan ISPA bagian bawah yang mencakup bebarapa bagian pernapasan dari atas hingga bagian
terdalam paru-paru bahkan hingga alveoli. Adapun beberapa infeksi yang termasuk dalam kategori
ISPA yaitu infeksi sinusitis, pleura, dan rongga telinga bagian tengah [1]. Selain itu, informasi
penting terkait infeksi ISPA yaitu sifat penyebaran ISPA mudah untuk menular melalui makanan
ataupun droplet terlebih ketika didukung dengan kondisi sanitasi lingkungan yang kurang baik.

Mengacu pada data kesehaatan dunia bahwa tahun 2007, penyakit ISPA merupakan
penyumbang terbesar dalam kasus kematian (morbility) di belahan dunia. Prakiraan empat juta
individu telah meninggal karena terjangkit ISPA, dan sekitar 98% disebabkan oleh infeksi ISPA
bagian bawah [2]. Indonesia telah mendeklarasikan bahwa penularan ISPA menjadi permasalahan
serius yang harus diperhatikan dan perlu dikendalikan di tengah-tengah masyarakat. Berdasarkan
pada data Kementrian Kesehatan Republik Indonesia hingga bulan Agustus 2023 penyakit ISPA
di Indonesia telah menyentuh pada angka 1,3 juta kasus. Kota Malang menjadi salah satu kota
penyumbang kasus ISPA dengan cakupan terbesar di Indonesia. Pada semester pertama tahun
2023, kasus ISPA di kota Malang terlapor mencapai angka 43.000 jiwa [3]. Memperhatikan hal
tersebut, maka penyakit ISPA harus diperhatikan dan dikendalikan dengan strategi-strategi yang
ada agar terwujudnya health society dan nihil kematian yang diakibat oleh infeksi ISPA.

Fakta dan informasi yang telah diutarakan sebelumnya, salah satu strategi pengendalian yang
dapat dilakukan dengan pendekatan ilmu matematika. Implementasi ilmu matematika yang dapat
diterapkan dalam bentuk pemodelan matematika yang dapat merepresentasikan dan memodifikasi
masalah sosial menjadi bentuk persamaan matematika [4]. Biasanya sistem persamaan matematika
diformulasikan dalam bentuk persamaan diferensial. Adapun model matematika yang banyak
digunakan dan sekaligus sebagai pondasi awal untuk merepresentasikan suatu penyebaran
penyakit, yaitu model dasar SIR — Kermack dan McKendrick [5]. Penelitian lain telah mengkaji

masalah infeksi pernafasan dengan pemodelan matematika untuk mengidentifikasi permasalahan
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cidera yang terjadi pada paru-paru, sehingga hasilnya digunakan sebagai acuan dalam pengobatan
infeksi pernafasan [6]. Pada tahun 2020, terdapat penelitian pemodelan penyakit ISPA yang
memberikan hasil kajian bahwa infeksi ISPA akan berpengaruh terhadap kinerja dan fungsi paru-
paru [7]. Adapun model matematika lain berbentuk SEHAR dengan lima kompartemen digunakan
untuk menggambarkan penyebaran ISPA [2]. Tahun 2022, penelitian lain tentang penyebaran
penyakit ISPA dengan mempertimbangkan adanya kasus infeksi reguler dan super infeksi
pernafasan [8]. Pengembangan model penyebaran ISPA delakukan dengan memperhatikan kasus
infeksi COVID-19 yang dapat berakibat terjadinya co-infection terhadap penyakit lain yang
berkaitan dengan sistem pernafasan manusia [9]. Pada tahun 2023 kajian tentang identifikasi dari
berbagai macam faktor-faktor penyebab individu akan terjangkit infeksi Acute Respiratory
Infection (ARI) [10]. Model matematika penyebaran penyakit ISPA terbaru telah dikaji dan
dianalisis dengan memperhatikan lokasi dan anatomi dari bakteri penyebab ISPA [1].

Secara umum kajian tentang model matematika yang dipaparkan pada paragraph
sebelumnya terfokus pada analisis dinamika dan perilaku solusi dari suatu sistem yang diguankan
sebagai strategi untuk mengendalikan infeksi pernafasan. Selain itu, strategi pengendalian yang
dapat diimplementasikan pada model matematika, yaitu melalui pendekatan teori kontrol optimal
[11]. Salah satu penelitian yang telah dikaji bahwa kontrol optimal dapat diimplementasikan dalam
mengendalikan penyebaran penyakit Hepatitis-B [12], dan pengontrolan penyebaran penyakit
kangker Servik dengan strategi vaksinasi dan skrening [13]. Selain itu, teori kontrol optimal
digunakan dalam pengontrolan penyebaran penyakit Malaria dengan memperhatikan adanya
faktor musiman keberadaan nyamuk [14], sedangkan pada tahun 2021 teori kontrol optimal
digunakan penyakit Ebola dengan usaha pengobatan sebagai kontrolnya [15]. Sebagai tambahan,
bahwa kontrol optimal dikontruksi untuk mengendalikan penyebaran COVID-19 dengan upaya
social distancing dan penggunaan masker [ 16], dan pengontrolan kasus COVID-19 dengan strategi
yang digunakan terfokus pada kelompok yang tervaksin dan terkarantina [17].

Uraian sebelumnya menunjukkan secara jelas pada penelitian bahwa model matematika dan
masalah kontrol optimal dapat diimplementasikan dalam pengontrolan suatu penyakit. Dengan
demikian, penelitian ini terfokus pada kontruksi model penyebaran ISPA dengan data infeksi ISPA
di Kota Malang. Selanjutnya, model ISPA dikembangkan dengan menambahkan variabel kontrol,
yaitu kontrol berupa upaya untuk pembatasan interaksi individu rentan dan individu terinfeksi, dan
kontrol berupa usaha peningkatan pengobatan terhadap populasi terinfeksi. Pada penelitian ini
terbagi menjadi beberapa bagian, yaitu latar belakang, asumsi pemodelan matematika,
pembahasan analisis dinamika model, penyelesaian masalah kontrol optimal, dan simulasi

numerik.
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2 Model Matematika

Model matematika penyakit ISPA pada penelitian ini dikontruksi denga lima kompartemen,

yaitu individu yang rentan (§), individu yang tervaksin ('), individu yang terpapar ISPA akan

tetapi tidak menunjukkan adanya infeksi atau laten (E), individu yang terinfeksi ISPA (I), dan

individu yang telah sembuh dari ISPA (S). Adapun asumsi yang digunakan untuk mengkontruksi

model matematika sebagai berikut:

1. Setiap manusia terkategorisasi sebagai individu yang rentan terinfeksi ISPA.

2. Pemberian vaksin hanya pada populasi yang rentan saja, dan populasi yang tervaksin telah kebal

dengan infeksi ISPA.

3. Laju infeksi penyakit ISPA dalam bentuk fungsi bilinear.

4. Populasi yang telah dinyatakan sembuh dari infeksi akan memiliki imunitas yang mampu

melawan infeksi ISPA, sehingga tidak adanya kejadian reinfeksi.

Selanjutnya, diberikan penjelasan dari variabel dan parameter yang digunakan untuk

pembentukan diagram kompartemen penyebaran penyakit ISPA.

Tabel 1. Variabel dan Parameter

Variabel atau

Parameter Interpretasi

S(t) Individu yang rentan terinfeksi ISPA pada suatu waktu ¢

V(t) Individu yang telah diberikan vaksin pada suatu waktu t

E(t) Individu yang terpapar penyakit ISPA dan belum mengindikasikan adanya

infeksi pada suatu waktu t

I(t) Individu yang telah terinfeksi penyakit ISPA

R(t) Individu yang telah dinyatakan sembuh dari penyakit ISPA
I8 Laju pertambahan populasi baru
a Laju vaksinasi yang diberikan kepada individu rentan
B Laju terjangkitnya ISPA antara individu rentan dan individu laten
o Laju perpindahan dari individu laten menjadi terinfeksi
1) Laju perpindahan dari individu tervaksi menjadi individu dengan imunitas
y Laju kesembuhan
€ Laju kematian akibat penyakit ISPA
U Laju kematian alami
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Mengacu pada asumsi-asumsi yang telah dan deskripsi pada Tabel 1, maka diagram

kompartemen model matematika penyebaran penyakit ISPA ditampilan pada Gambar 1 berikut:

I.UE(t) I,ul(t)
E@) oE(t) (R YI(t) 1RO LR (1)
BSDI(L) l el(e)
— S5(1)
MS(ti as(t) oV
V(t)
uv(t)

Gambar 1. Diagram Kompartemen Model Penyebaran ISPA
Berdasarkan diagram kompartemen pada Gambar 1 diperoleh model matematika dalam

bentuk sistem persamaan diferensial biasa nonlinear berikut:

ds(t)
— =T = BSOIE) = (@ + WS
dv (t)
T =aS() — (6 + V(D)
dE
df) = BS(OI(t) — (o + WE(?) .
di(t)
— = 0E@®) = (e +y +mI®)
dl;it) = yI(t) + 8V (t) — uR(t),

untuk mempermudah pembahasan dan penulisan, maka variabel-variabel S(t),V (t), E(t),I1(t),
dan R(t) akan disajikan dalam bentuk S,V,E, I, R.
Selanjutnya, estimasi parameter untuk model (1) dilakukan dengan mengacu pada data

infeksi ISPA di kota Malang sejak tahun 2015-2023 berikut:
Tabel 2. Kasus ISPA di Kota Malang
Tahun Total Kasus ISPA (Jiwa)

2015 11.004

2016 55.351

2017 59.184
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Tahun Total Kasus ISPA (Jiwa)
2018 78.457
2019 29.526
2020 33.222
2021 28.571
2022 35.055
2023 43.000

Proses estimasi parameter menggunakan metode Isgcurvefit dengan nilai awal untuk laju

pertumbuhan 7 sebesar 150 individu sebagai proses fitting data. Haslil fitting data ditampilkan

pada Gambar 2 yang menunjukkan perbandingan antara fitting data dan data infeksi ISPA di Kota

Malang. Proses fitting data terlihat baik dikarenakan diperoleh nilai MAPE sebesar 13,10%.

x10%
T

MAPE = 13.10%

T T

—¥— Data Riil
8 |- |—— Model Estimasi

Data Riil dan Fitting Data

2015 2016 2017

Gambar 2.

Tahun
2018 2019 2020 2021 2022 2023

Grafik Hasil Fitting Data

Berdasarkan pada proses fitting data diperoleh nilai-nilai parameter untuk model (1) yang

ditampilkan pada Tabel 3, dan parameter ini yang digunakan untuk simulasi numerik.

Tabel 3. Nilai Estimasi Parameter

Parameter Nilai Estimasi
a 0,29995
B 0,29246
o 0,5385
6 0,1
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Parameter Nilai Estimasi
y 0,38132
€ 0,18552
U 0,25283

3  Hasil dan Pembahasan

Pembahasan dan analisis model dari sistem persamaan (1) tentang penyakit ISPA terbagi
menjadi beberapa bagian, yaitu analisis keterbatasan dan kepositifan solusi, kajian titik
kesetimbangan, bilangan reproduksi dasar, analisis kestabilan lokal titik kesetimbangan, dan
analisis kesensitivan.
3.1 Keterbatasan dan Kepositifan Solusi

Misalkan variabel N merupakan notasi totol populasi, maka N =S +V + E + 1 + R, dan

berlaku sebagai berikut
dN dS dV dE dI dR
d Tdr T de Tde Tacta
=g —pSI—aS—uS+aS—6V—uV+pSI —oE — uE + oE — ¢l
—yl —ul +yl + 6V — uR
=m—¢e —u(S+V+E+I+R)
=m—¢&l —uN
< m — uN. (2)
Terlihat bahwa persamaan (2) merupakan persamaan differensial biasa, dan apabila diselesaikan

dengan faktor pengintegralan, maka diperoleh solusi berikut
I
N(t) < o + ce M. (3)

Selanjutnya, misal solusi N(t) pada persamaan (3) diberikan nilai awal t = 0, maka diperoleh

solusi khusus berbentuk
I /[
N < Z4 (M) - Z)ene @
T u
Akibatnya untuk t — oo pada persamaan (4) akan berlaku tlim N(t) < g Oleh karena itu, solusi

dari model penyebaran penyakit ISPA akan terbatas oleh suatu nilai g pada daerah

v={(SV.ELRN® < %} (5)
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Terorema 1. Misalkan berlaku S(0) = 0,V(0) = 0,E(0) = 0,/(0) = 0,R(0) = 0, maka semua
solusi sistem persamaan (1) akan bernilai positif untuk setiap t = 0.
Bukti. Kepositifan solusi dari sistem persamaan (1) dapat dibuktikan dengan analogi pembuktian

pada penelitian [18], dan ditampilkan sebagai berikut

ds dv
—| =n—BSI—aS—uS=m>0, — =aS—6V—-—uV=aS=>0
dtls=o dtly=o
dE dl
— = BSI — oE — uE = BSI = 0, — =¢gE—¢l—yl—ul =0FE =20 (6)
dt E=0 dt1=0
dR
— =yl +6V—-—uR =yl +6V = 0.
dtlr=o

Terlihat jelas dari persamaan (6) bahwa keseluruhan sistem memberikan hasil selalu lebih besar
dari nol untuk setiap waktu, artinya semua bernilai non negatif.
3.2 Titik Kesetimbangan Model

Titik kesetimbangan sistem persamaan (1) diperoleh ketika sistem persamaan memenuhi
kondisi % = Z—‘: = Z—f = % = % = 0. Pada analisis titik kesetimbangan terbagi menjadi dua
bagian, yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Titik
kesetimbangan bebas penyakit terjadi ketika tidak adanya infeksi ISPA pada kelompok populasi,
artinya [ = 0. Apabila I = 0, maka titik kesetimbangan bebas penyakit sistem persamaan (1)

diperoleh

an dam > 7

s

BSYELR = (o G T T
Selanjutnya mengacu titik kesetimbangan pada persamaan (7) dapat ditentukan bilangan
reproduksi dasar dari sistem persamaan (1). Bilangan reproduksi dasar merupakan nilai ambang
batas yang dapat menunjukkan adanya infeksi atau tidak. Pada penelitian ini, bilangan reproduksi
dasar ditentukan dengan metode Next Generation Matrix (NGM) [19], [20], dan diperoleh
bilangan reproduksi dasar R, sebagai berikut

ofm

GO ICET R 2D
Selain titik kesetimbangan bebas penyakit, model penyebaran penyakit ISPA memiliki titik

(8)

Ro

kesetimbangan endemik. Titik kesetimbangan endemik didapatkan ketika I # 0, artinya infeksi
penyakit ISPA menyebar secara luas. Ketika I # 0, maka sistem persamaan (1) memiliki titik

kesetimbangan endemik berikut



205 Lukman Hakim, Lilis Widayanti

T aT

ST ®-Darmrarr T GrO(Re-D@tmratn)
o = 1 ( T(Ry — 1) (a + u) >*_(R0—1)(a+,u) R*_y1*+6V*
Co+u\Re-D(a+w+a+u) B T

3.3 Analisis Kestabilan Lokal Titik Kesetimbangan
Analisis kestabilan lokal model penyebaran penyakit ISPA dapat ditentukan dengan
linearisasi sistem persamaan (1) dan proses ini menghasilkan matriks Jacobian. Adapun matriks

Jacobian yang bersesuaian dengan sistem persamaan (1) berbentuk

[—([31 +a+u) 0 0 —-BS 0 1
| a -6+ 0 0 0 |
j=| B 0 —(c+w Bs 0. ©)
l 0 0 o —(e+y+uw O
0 ) 0 y —u

Kestabilan lokal titik kesetimbangan bebas penyakit diperoleh dengan substitusi titik tetap
bebas penyakit pada matriks Jacobian (9), dan diperoleh matriks Jacobian untuk titik
kesetimbangan bebas penyakit berikut

] B .
—(a+p) 0 0 _a+u 0
a —(6+uw 0 0 0
J(Eo) = pr (10)
0 0 —(o+ ) o 0
0 0 o —(e+y+w) O
0 [0) 0 y —u

Langkah selanjutnya adalah menentukan nilai eigen yang bersesuaian dengan matriks Jacobian
(10). Nilai eigen diperoleh dengan menyelesaikan persamaan det(J(E,) — Al) = 0. Melalui
kaidah ekspansi kofaktor matriks, diperoleh persamaan karakteristik yang bersesuaian berikut

(—=(@+w) = D6+ = D(—pu— DA + byA + by), (11)
dengan

bj=0+e+y+2u
b, =(c+w(e+y+u) —opm.

Berdasarkan pada persamaan karakteristik (11), diperoleh nilai-nilai eigen secara terperinci

h=—(a+w, A=-0+w, I3=-n (12)

dan

—(a+e+y+2,u)iJ(a+e+y+2u)2—4((a+u)(e+y+u)—aﬁn) (13)
> :

/14,5 =
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Apabila persamaan (13) dilakukan analisis untuk kestabilan sistem, maka nilai 4, dan A5 akan
bernilai negatif ketika nilai diskrimannya D > 0, dan (¢ + p)(e + y + 1) > ofm. Artinya kondisi
ini disebut sebagai syarat kestabilan lokal untuk titik kesetimbangan bebas penyakit, yaitu

(c+m+y+u
< .
af

Adapun kestabilan titik endemik dapat diketahui dengan beranalogi pada penentuan

D>0,dan & (14)

kestabilan titik bebas penyakit. Sehingga diperoleh matriks Jacobian yang bersesuaian dengan titik

endemik, yaitu

—BI"+a+ ) 0 0 —pS* 0
a —(6+uw 0 0 0
J(E") = BI* 0 —(o+u) BS* 0|, (15)
0 0 o —(e+y+w) O
0 ) 0 y —U
dengan
I
St =

Ro—D(a+p) +a+y
(Ro — D(a +p)
Z .

Berdasarkan pada matriks Jacobian (15), dan menyelesaikan persamaan det(J(E*) —AI) =0

I =

didapatkan persamaan karakteristik yang bersesuaian dalam bentuk derajat lima. Dikarenakan
berderajat lima, maka akar-akar persamaan karakteristik yang bersesuaian dengan matriks
Jacobian (15) sulit ditentukan secara analitik. Oleh karena itu, proses analisis dilakukan dengan

simulasi numerik pada tiga bidang fase S, E, dan I, sebagai berikut

500 -

Titik awal 1
Titik awal 2
400 T!t!kawal 3
Titik awal 4
— 300 +
g S 2.70608
=] E 3.14707
g 1 187.651
& 200 4, -
\\ S 395.707
018
S 298.598
mna\ S 98.9326 S 196.231 E 150.012 [38
E 80.0959 :
E 40.0772 | 51.3844
Titik Tetap 111.4927 N\ Z 23.8401 T b
.
0 =l -
0 e L
0 1;5&1& a0 400
150 Teme— 100 200
. 200 0
Populasi E Populasi S

Gambar 3. Bidang Fase Pada Populasi S, E, dan [
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Pada Gambar 3 menampilkan bahwa hasil simulasi pada tiga bidang fase dengan beberapa nilai
awal yang berbeda menuju titik kesetimbangan yaitu E*(S*, E*, I*) = (2,706; 3,147;187,651;),
dan nilai Ry = 8,117. Artinya, simulasi ini menunjukkan bahwa solusi akan konvergen menuju
titik kesetimbangan endemik, sehingga titik kesetimbangan endemik bersifat stabil asimtotik.
3.4 Analisis Sensitivitas Parameter

Analisis sensitivitas parameter dikaji untuk melihat seberapa besar pengaruhnya parameter
terhadap suatu model yang dianalisis [19]. Indeks sensitivitas parameter terhadap bilangan

reproduksi dasar dapat dicari dengan

ORy ( p
Ro _ 01
=5 (%) 19

Pada persamaan (16) notasi p merupakan parameter yang terlibat pada bilangan roproduksi dasar,
dan persamaan bilangan reproduksi dasar mengacu pada persamaan (8). Selanjutnya dilakukan
evaluasi dengan rumus pada persamaan (16), dan mengacu nilai-nilai pada Tabel 3 diperoleh nilai
indeks sensitivitas parameter terhadap R, untuk kasus model penyebaran penyakit ISPA. Indeks

sensitivitas ditampilkan dalam bentuk grafik bar yang disajikan pada Gambar 4.

1.0000 1.0000 Sensitivitas Lokal

S o
[6;] o [$,]

Nilai Sensitivitas Parameter Terhadap R0

L 153 el n o € v

Gambar 4. Indeks Sensitivitas Parameter
Berdasarkan pada Gambar 4 terlihat bahwa indeks sensitivitas yang paling positif adalah = dan £3,
sedangkan yang paling negatif adalah u, dan diikuti oleh parameter a. Pada kasus indeks
sensitivitas positif memberikan makna bahwa ketika dilakukan pengurangan nilai parameternya,
maka nilai bilangan reproduksi dasar akan ikut berkurang, atau sebaliknya. Sedangkan indeks
sensitivitas negatif berlaku sebaliknya, yaitu ketika diturunkan nilai parameternya, maka nilai
bilangan reproduksi dasar akan bertambah, atau sebaliknya. Misalnya, mengacu pada indeks

sensitivitas untuk parameter (3, ketika nilai parameter § diturunkan, maka diikuti oleh penurunan
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nilai R. Jika nilai R, turun, artinya populasi yang terinfeksi (1) juga akan berkurang, dan akibatnya
tidak terjadi endemik. Selanjutnya, jika dipandang indeks sensitivitas dari parameter a, maka akan
dapat diinterpretasikan bahwa meskipun nilai diturunkan ataupun dinaikkan maka tidak terlalu
signifikan mempengaruhi populasi terinfeksi. Sebagai ilustrasi pengaruhnya parameter f dan a

dapat dilihat pada Gambar 5.

Kesensitivan Parameter 3
140 T T T T T

Kesensitivan Parameter o
140 T T T . :

120 - 120 |

a =0.29995
100 — = 0.6
a=09
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80 = 0.01

100 |

3=0.29246
—3=0.6
5=0.9
— 3=0.05
—3=0.01

80

60 60k

Populasi Terinfeksi (1)
Populasi Terinfeksi (I)

40+ 40+

20F 20k

Waktu Waktu

Gambar 5. Kesensitivan Parameter  dan a terhadap perilaku solusi populasi terinfeksi

4  Masalah Kontrol Optimal

Analisis kontrol optimal diterapkan sebagai langkah pengendalian penyebaran penyakit
ISPA. Masalah kontrol optimal yang dikontruksi terhadap model (1) bertujuan untuk
meminimumkan populasi laten dan meminimumkan populasi terinfeksi. Besar harapannya ketika
populasi laten dan terinfeksi minimum, maka tidak akan terjadi endemik. Dilain sisi, kontrol
optimal ini bertujuan memaksimumkan populasi tervaksin dan populasi yang sembuh.
Selanjutnya, berdasarkan pada hubungan antara biaya edukasi dan biaya pengobatan dengan
jumlah individu yang laten dan terinfeksi berbentuk tidak linear, maka dipilih fungsi kuadratik
untuk meminimumkan populasi laten dan terinfeksi, sehingga fungsi tujuan dibentuk dalam fungsi
Lagrange dengan asumsi tanpa adanya biaya di akhir waktu.

tr
Min | (uy, uy) = J (E@) +1(t) — V() — R(t) + Aui(t) + Buj(t))dt, (17)
to

dengan variabel kontrol terletak pada interval 0 < u;(t) <1, 0 S u,(t) <1, dan ty <t < ty,

serta bobot 4, B selalu bernilai positif. Selanjutnya, variabel kontrol yang diperkenalkan digunakan
dalam masalah kontrol optimal, yaitu variabel u,(t) yang merepresentasikan tentang usaha

edukasi dengan terfokus pada interaksi antara individu rentan dan individu terinfeksi. Variabel
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kontrol u,(t) merepresentasikan usaha pengobatan secara intensif terhadap individu yang telah
terinfeksi ISPA. Oleh karena itu, formulasi masalah kontrol optimal dapat dibangun mellaui
persamaan (1) dengan menambahkan variabel kontrol u,(t) dan wu,(t), diperoleh sistem

persamaan dengan variabel kontrol sebagai berikut

as
B - (1w O)BSOIO — @+ WSO
dVv (t)
= asS(t) — (6 +wv(t)
T - (1 - w@)BSOIE) - (0 + WEE) (%)
d;_(;) = GE(8) — (e + 7 + WI(®) — ul (©)
dl:lit) = yI(t) + 6V (t) — uR(t) + u,I(t)

Adapun langkah penyelesaian dan analisis masalah kontrol optimal dari sistem persamaan
(17) dan (18) dapat diselesaikan dengan prinsip minimum Pontryagin. Langkah awal dalam prinsip
Pontryagin dengan membentuk fungsi Hamiltonian yang bersesuaian dengan persamaan (17) dan
(18). Fungsi Hamiltonial diformulasikan dengan bentuk
H=E()+I1(t) = V() — R(t) + AuZ(t) + Bui(t)
+ s (= (1= w(©)BSWOIE) = (@ +mS(©))
+ 1y (aS@®) — (6 + V(D)
+ g (1= u (0)BSOI(E) — (o + WE())
+ 9, (0E(®) — (e +y + wWIE) —u (D))
+Yr(Y1(6) + 8V () — kR(D) + u,1 (1)),
dengan variabel Y;,i = S,V, E, I, R disebut variabel-variabel adjoind (costate).

(19)

Berdasarkan pada prinsip Pontryagin, fungsi Hamiltonian (19) yang telah dibentuk agar
optimal harus memenuhi kondisi stasioner, kondisi state, dan kondisi costate.
4.1 Kondisi Stasioner

Kondisi stasioner dapat diperoleh dengan menurunkan fungsi Hamiltonian secara parsial

oH _

terhadap variabel u,(t) dan u,(t), dan memenuhi o

0. Diferensiasi fungsi Hamiltonian

terhadap u, diperlihatkan
J0H
—— = 2Au; + Y5(BSOI®) — Y(BSOI®) = 0,

ou,

sehingga diperoleh kondisi stasioner
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BSOIW) W5 — ¥s)

uy (¢) = 2

Adapun diferensiasi terhadap u, ditunjukkan

0H
du,
diperoleh

1) (W1 — ¥r)
2B '

Dikarenakan variabel-variabel kontrol berada pada interval [0,1], maka berlaku kondisi optimal

uy(t) =

untuk varaibel kontrol berikut

uj(t) = min {mak (0, ,BS(t)I(t;S/JE — lps)) , 1}

1)) — Pr) 1
2B )

u;(t) = min {mak <O,
4.2 Kondisi State
Kondisi state merupakan kondisi kendala yang akan terlibat pada suatu masalah kontrol
optimal. Kendala yang terdapat pada penelitian ini merupakan sistem (9) dengan kondisi awal
S(0) = S,,V(0) =V,, E(0) = E,, I(0) = Iy, dan R(0) = R,,.
4.3 Kondisi Costate

Kondisi costate dapat diperoleh ketika fungsi Hamiltonian diturunkan terhadap variabel-

variabel state dan kemudian dikalikan dengan negatif satu, ditunjukkan sebagai berikut:

% — _‘Cll_’;' - _ {¢5 (_(1 —uy ()8l — (a + u)) + 1y (@) + g ((1 - ul(t))ﬁf)}
O O = (L4 (-6 + ) + (D))
d;lf - _Z—Z = —{1+vp(=(c + W) + (o)}
O A (14 ys(~(1 — w(©)BS) + e (1~ i ()S)
+ (= (e +y + p+u) + Yr(y +1:(0))}
L )}

dengan kondisi transversal Ys(T) = Yy (T) = Y(T) = Y, (T) = Yx(T) = 0.
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S5  Simulasi Numerik Masalah Kontrol Optimal

Simulasi numerik ditampilkan sebagai pendukung dari hasil analisis yang telah dikerjakan.
Penyelesaian numerik dikerjakan dengan metode Sweep Maju-Mundur, dan berbantuan software
MATLAB. Pada simulasi numerik digunakan parameter pada Tabel 3, dengan nilai awal S(0) =
100, V(0) =10, E(0) =1, 1(0) = R(0) = 0, dan nilai bobot A = 0,05, dan B = 0,075. Hasil

simulasi menampilkan perjalanan solusi tanpa dan dengan kontrol sebagai berikut

150
@ s Tanpa Kontrol
% s Dengan Kontrol
= 100
0]
x
]
S 50
>
Q
o
¢ G
0
0 5 10 15 20 25 30 35 40 45 50
Waktu
_60r
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7]
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2
Ko}
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>
aQ
o
o 0 1 1 1 1 1 1 1 1 1 ]
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Waktu

Gambar 6. Perbandingan Simulasi Tanpa dan Dengan Kontrol Populasi Rentan dan Tervaksin

Grafik pada Gambar 6 merepresentasikan perjalanan populasi dengan dan tanpa penerapan
kontrol. Dinamika solusi populasi rentan (S) tanpa kontrol digambarkan dengan garis merah.
Populasi rentan mengalami penurunan signifikan mulai awal waktu dan mencapai kestabilan
dengan posisi yang sangat rendah dalam waktu singkat. Sebaliknya, dinamika solusi dengan
kontrol digambarkan dengan garis biru, penurunan populasi terjadi lebih lambat serta
kestabilannya lebih tinggi dibandingkan dengan populasi rentan tanpa kontrol. Grafik kedua dari
Gambar 6 merepresentasikan perjalanan solusi populasi tervaksin (V). Simulasi tanpa kontrol
menunjukkan peningkatan secara cepat di awal waktu hingga mencapai puncak tertinggi,
kemudian diikuti penurunan secara perlahan hingga stabil. Sedangkan perjalanan solusi dengan
kontrol, perubahan populasi tervaksin mencapai puncak dan stabilnya berada di atas solusi tanpa
kontrol. Berdasarkan simulasi terlihat bahwa dengan kontrol pengendalian interaksi antara
individu rentan dan individu terinfeksi dapat mempertahankan jumlah populasi rentan meskipun

tidak signifikan.
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Gambar 7. Perbandingan Simulasi Tanpa dan Dengan Kontrol Populasi Laten dan Terinfeksi

Gambar 7 menampilkan perjalanan solusi populasi laten dan populasi terinfeksi.
Berdasarkan grafik terlihat menampilkan dua skenario, yaitu simulasi tanpa dan dengan kontrol
terhadap populasi laten (E) dan terinfeksi (I). Populasi laten tanpa kontrol ditunjukkan dengan
grafik warna merah, terlihat bahwa perjalanan populasi laten meningkat tajam dari awal waktu
hingga stabil dari waktu ke-5 hingga akhir simulasi mencapai angka sekitar 200. Begitu juga,
simulasi dengan kontrol menunjukkan populasi laten meningkat mulai dari awal waktu, dan
terlihat grafik dengan kontrol lebih rendah dibandingkan tanpa kontrol. Hal ini merepresentasikan
bahwa efek pembatasan populasi tidak signifikan pengaruh terhadap populasi laten. Adapun grafik
yang bawah merepresentasikan populasi terinfeksi tanpa kontrol, dan menunjukkan adanya
peningkatan sangat signifikan dari permulaan waktu simulasi hingga akhir waktu simulasi, dan
konvergen di angka sekitar 125. Sedangkan simulasi dengan kontrol menampilkan bahwa
populasi terinfeksi meningkat di awal waktu, dan konvergen pada angka yang jauh lebih rendah
dibandingkan dengan nilai konvergensi tanpa kontrol. Hal ini memperlihatkan bahwa peningkatan

pengobatan memberikan pengaruh signifikan dalam mengendalikan populasi terinfeksi.
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Gambar 8. Perbandingan Simulasi Tanpa dan Dengan Kontrol Populasi Sembuh
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Pada Gambar 8 menampilkan hasil simulasi yang merepresentasikan dinamika populasi
sembuh setelah diberikan kontrol meningkat jauh dibandingkan tanpa kontrol. Artinya, skenario
kontrol yang diberikan pada model matematika mampu meningkatkan populasi yang sembuh, dan

efektivitas kontrol pemulihan populasi yang terinfeksi berjalan dengan baik.
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Gambar 9. Simulasi Profile Kontrol u; (t) dan u,(t)

Grafik pada Gambar 9 menunjukkan perjalanan dari profile kontrol u; dan u, terhadap
waktu. Simulasi bagian (a) menunjukkan bahwa proses kontrol u, diawal waktu sedikit usaha yang
dilakukan kemudian meningkat hingga waktu ke-35, hingga akhirnya menurun secara perlahan
hingga di akhir simulasi. Adapun kontrol u,, terlihat dominan mulai diawal waktu hingga akhir
waktu ke-50. Artinya bahwa dominasi kontrol u, dapat diterapkan dalam penanganan penyebaran
ISPA, dikarenakan kontrol pengobatan terlihat intensif dan cenderung lebih cepat dalam
penurunan jumlah populasi yang terinfeksi dan meningkatkan laju kesembuhan. Hal ini
menunjukkanbahwa usaha pengobatan lebih baik secara simulasi dibandingkan dengan usaha

pembatasan interaksi individu rentan dengan individu terinfeksi.

6 Simpulan
Pada penelitian ini menghasilkan model penyebaran ISPA dengan mempetimbangkan
adanya proses vaksinasi. Analisis dinamik menunjukkan bahwa model SVEIR memiliki dua titik

kesetimbangan, yaitu titik bebas penyakit yang bersifat stabil lokal dengan syarat D >

(o+u)(e+y+u)

0,dan < . Titik tetap endemik bersifat stabil asimtotik berdasarkan pada simulasi

pada tiga bidang fase SEI, dan berdasarkan simulasi diperoleh nilai bilangan reproduksi dasar
Ry = 8,117. Analisis sensitivitas menunjukkan bahwa indeks sensitivitas yang paling positif

terhadap bilangan R, adalah parameter 7 dan f. Selanjutnya, penelitian ini menghasilkan analisis
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masalah kontrol optimal dengan dua variabel kontrol, yaitu kontrol berupa usaha pembatasan
interaksi individu rentan dan individu terinfeksi, serta kontrol berupa upaya pengobatan intensif
terhadap populasi terinfeksi. Berdasarkan pada analisis dan simulasi numerik yang dilakukan telah
sesuai dengan formula fungsi tujuan yang dibentuk. Hal ini menginterpretasikan bahwa
pengobatan secara intensif lebih berpengaruh dibandingkan dengan usaha pembatasan interaksi
antara individu rentan dan individu terinfeksi. Model matematika yang telah dikaji dapat diperluas
dengan mempertimbangkan efek tersaturasi pada kejadian infeksi penyakit ISPA, atau dapat
dikembangkan dengan penambahan efek gangguan (noise) melalui pendekatan persamaan

diferensial stokastik.
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