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Abstrak 

Data spasial merupakan data yang memuat informasi yang berkaitan dengan karakteristik geografis 

suatu wilayah. Perkembangan data spasial yang mengarah pada data berskala besar membutuhkan metode 

analisis yang efisien dalam proses pengolahannya. Salah satu metode analisis yang dapat digunakan untuk 

mengolah data spasial berskala besar adalah spatial fuzzy clustering. Metode ini memungkinkan adanya 

penyesuaian bobot kelompok berdasarkan kemungkinan data, sehingga lebih mampu menangkap variasi 

lokal yang sebenarnya terjadi dalam data spasial. Metode spatial fuzzy clustering dengan penalti spasial, 

Spatial Fuzzy Clustered Regression (SFCR) dan tanpa penalti spasial, Fuzzy Geographically Weighted 

Clustering Regression (FGWCR) dievaluasi melalui simulasi pada penelitian ini. SFCR merupakan metode 

yang menggabungkan klasterisasi spasial dan pembentukan persamaan regresi secara simultan, sehingga 

waktu komputasi menjadi lebih efisien. FGWCR menghasilkan klaster yang mempertimbangkan kedekatan 

spasial dan kesamaan atribut sehingga efektif digunakan pada data spasial. Data dirancang sehingga 

terdapat 6 klaster dalam proses simulasi. Hasil simulasi menunjukkan metode SFCR lebih mampu 

mencerminkan keragaman data dan pembagian klaster dengan akurat. Nilai 𝑅2 untuk metode SFCR pada

derajat fuzziness 2 dan autokorelasi spasial lemah, moderat, dan kuat berturut-turut yaitu 99.7%, 99.6%, 

dan 99.5%, sedangkan untuk metode FGWCR yaitu 98.5%, 98.6%, dan 98.1%. Kebaikan model dievaluasi 

oleh nilai RMSE. Semakin kecil nilai RMSE maka model yang dihasilkan semakin baik. Nilai RMSE untuk 

metode SFCR pada derajat fuzziness 2 dan autokorelasi spasial lemah, moderat, dan kuat berturut-turut 

yaitu 0.30, 0.289, dan 0.298, sedangkan untuk metode FGWCR yaitu 0.659, 0.541, dan 0.551. 

Kata Kunci: regresi terklaster simultan, klasterisasi spasial, spatial fuzzy, SFCR, FGWCR. 

Abstract 

Spatial data refers to data that contains information related to the geographical characteristics of a 

region. As spatial data evolves into large-scale datasets, efficient analytical methods are required for 

processing the data. One such method suitable for analyzing large-scale spatial data is spatial fuzzy 

clustering. This method allows for the adjustment of cluster weights based on data likelihood, making it 

more capable of capturing the actual local variations present in spatial data. In this study, two types of 

spatial fuzzy clustering methods were evaluated through simulation: the method with a spatial penalty, 

Spatial Fuzzy Clustered Regression (SFCR), and the method without a spatial penalty, Fuzzy 

Geographically Weighted Clustering Regression (FGWCR). SFCR is a method that combines spatial 

clustering and regression modeling simultaneously, resulting in more efficient computation time. FGWCR 

produces clusters by considering both spatial proximity and attribute similarity, making it effective for 

spatial data analysis. The data were designed to form six clusters during the simulation process. The 

simulation results showed that the SFCR method was more capable of accurately capturing data variation 

and cluster distribution. The R² values for SFCR at a fuzziness degree of 2 and under weak, moderate, and 

strong spatial autocorrelation were 99.7%, 99.6%, and 99.5%, respectively, while the R² values for 

FGWCR were 98.5%, 98.6%, and 98.1%. Model performance was evaluated using RMSE, where lower 

RMSE values indicate better performance. The RMSE values for the SFCR method at a fuzziness degree of 
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2 and under weak, moderate, and strong spatial autocorrelation were 0.30, 0.289, and 0.298, respectively, 

while the RMSE values for the FGWCR method were 0.659, 0.541, and 0.551. 

Keywords: Simultaneous clustered regression, spatial clustering, spatial fuzzy, SFCR, FGWCR.

1 Pendahuluan 

Perkembangan metode analisis untuk data spasial berskala besar salah satunya dengan 

metode spatial fuzzy clustering. Metode ini memungkinkan adanya penyesuaian bobot kelompok 

berdasarkan kemungkinan data, sehingga lebih mampu menangkap variasi lokal yang sebenarnya 

terjadi dalam data spasial. Data spasial merupakan data yang memuat informasi atribut dan lokasi 

geografis dengan sistem koordinat tertentu sebagai dasar referensinya [1]. Menurut Cressie dalam 

Djuraidah [1], data geospasial terdiri dari tiga jenis, yaitu pola titik, data geostatistik, dan data area. 

Pemodelan data area perlu memperhatikan efek spasial seperti dependensi spasial dan keragaman 

spasial. Daerah yang berdekatan diharapkan lebih mirip dibandingkan daerah yang berjauhan, 

merupakan gagasan dasar dari dependensi spasial. Keragaman spasial terdiri atas dua macam yaitu 

ketidakstabilan struktural dan heteroskedastisitas [1]. 

Ketidakstabilan struktural yaitu parameter struktural/koefisien regresi yang tidak stabil pada 

semua lokasi menyebabkan koefisien regresi yang berbeda-beda pada setiap lokasi amatan. 

Pendekatan persamaan regresi spasial untuk mengatasi hal ini adalah Geographically Weighted 

Regression (GWR). Seluruh amatan pada persamaan ini digunakan dalam pendugaan dengan 

bobot yang berbeda sehingga menghasilkan persamaan regresi lokal untuk setiap lokasi. Pada 

persamaan GWR yang areanya luas (data lokasi banyak) akan lebih mudah diterapkan bila jarak 

terbatas sehingga sering digunakan bandwith. Namun demikian persamaan GWR memiliki 

beberapa kekurangan yaitu cenderung menghasilkan koefisien ekstrim pada dataset dengan 

kerapatan spasial rendah dan data area lebih sensitif terhadap koefisien ekstrim tersebut [2]. 

Pendekatan GWR dengan regularisasi yaitu metode pengurangan parameter dan penyederhanaan 

persamaan seperti Lasso dan Ridge telah dikembangkan untuk mengakomodir kekurangan tersebut 

namun pendekatan tersebut tetap tidak dapat mencapai efisiensi secara komputasi [3]. Bila dataset 

yang digunakan berukuran besar maka persamaan GWR yang terbentuk akan sangat banyak dan 

kompleks. Terdapat alternatif lain untuk mengatasi hal tersebut yakni dilakukan pengelompokan 

yang terdiri atas dua macam metode. Pertama pengelompokan tanpa penalti yaitu Fuzzy 

Geographically Weighted Clustering Regression (FGWCR), dan kedua pengelompokkan dengan 

menyertakan fungsi penalti pada Spatial Fuzzy Clustered Regression (SFCR). 

Modifikasi persamaan GWR dengan penggerombolan fuzzy merupakan salah satu alternatif 

untuk mengatasi kompleksitas persamaan pada dataset berukuran besar. FGWCR menerapkan 
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efek geografis pada algoritma penggerombolan fuzzy, sehingga memiliki keunggulan dalam 

mengatasi pencilan [4]. Penelitian oleh [5] menunjukan model berbasis ketergantungan spasial 

lebih andal dalam stabilitas estimasi. FGWC sering dimanfaatkan dalam analisis geodemografi 

karena dapat mengakomodasi pengaruh kedekatan geografis antar entitas spasial sekaligus 

menyempurnakan kinerja algoritma fuzzy c-means standar[6][7]. 

Sugasawa dan Murakami [3] memperkenalkan metode baru yang menggabungkan 

persamaan regresi spasial dengan penggerombolan fuzzy yaitu SFCR. Perbedaan metode ini dari 

metode-metode sebelumnya yaitu proses pembentukan persamaan regresi dan penggerombolan 

dilakukan secara simultan. Hal tersebut bertujuan untuk menghasilkan penggerombolan spasial 

yang sesuai dengan struktur regresinya dan proses komputasi menjadi lebih efisien. Suatu amatan 

dengan lokasi yang bertetangga memungkinkan untuk memiliki karakteristik yang mirip sehingga 

dapat menjadi satu gerombol. Fungsi penalti yang didasari oleh persamaan Potts digunakan untuk 

mendorong struktur tersebut. Penentuan gerombol pada persamaan SFCR ditentukan oleh suatu 

kriteria informasi. Melalui Teknik penggerombolan tersebut hasil pendugaan menjadi lebih stabil 

dan lebih mudah diinterpretasikan dibandingkan dengan metode GWR. 

Pembobotan berdasarkan persamaan karakteristik antarwilayah dengan menerapkan metode 

fuzzy terklaster telah diteliti oleh Andrytiarandy pada tahun 2017. Hasil penelitiannya 

menunjukkan metode GWR dengan penggerombolan fuzzy lebih unggul dibandingkan dengan 

penggunaan persamaan GWR saja[8]. Namun pada penelitian tersebut belum menggunakan 

metode fuzzy dengan efek geografis/spasial. Pendekatan klaster dalam distribusi spasial juga 

diteliti oleh [9] tanpa pembentukan model regresi dan oleh [10] dengan pembentukan regresi 

nonsimultan. Penelitian ini merupakan kajian yang baru karena belum ada penelitian yang serupa 

sebelumnya. Oleh karena itu penelitian ini bertujuan untuk mengevaluasi metode spatial fuzzy 

clustering yaitu SFCR dan FGWCR melalui simulasi. 

 

2 Metode Penelitian 

2.1 Data  

Data yang digunakan dalam penelitian ini merupakan data yang dibangkitkan melalui proses 

simulasi dengan 539 titik lokasi kecamatan dalam Provinsi Jawa Barat. Domain lokasi yaitu {𝑠𝑖 =

(𝑢𝑖, 𝑣𝑖)|𝑢𝑖𝜖[−7.7583, −5.99626], 𝑣𝑖𝜖[106.44792,108.79253]}, 𝑖 = 1, . . , 539.  Peubah penjelas 

berjumlah 8 peubah yang dibangkitkan melalui proses Gaussian spasial dengan eksponensial 

isotropik [11]. 𝑧𝑘(𝑠𝑖) merupakan nilai dari proses Gaussian spasial ke- 𝑘 di lokasi (𝑠𝑖) dengan 
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mean nol dan struktur kovarian spasial isotropik exp (−
||𝑠𝑖−𝑠𝑗||

ղ
), ղ mengontrol autokorelasi 

spasial lemah (ղ = 0,2), moderat (ղ = 0,6), dan kuat (ղ = 1), 𝑘 = 1, . . ,8. 

2.2 SFCR   

Sugasawa dan Murakami [3] memperkenalkan metode baru untuk menduga pola hubungan 

antar peubah yang tergerombol secara spasial. Kombinasi penggerombolan dengan fungsi penalti 

yang terinspirasi dari persamaan Potts mendorong terbentuknya gerombol pada lokasi yang 

bertetangga. Ide yang mendasari penggabungan regresi spasial dengan penggerombolan adalah 

lokasi geografis yang dapat dibagi kedalam beberapa gerombol, dimana lokasi bertetangga dengan 

karakteristik yang sama dapat menjadi satu gerombol. Teknik penggerombolan ini menyebabkan 

hasil pendugaan menjadi lebih stabil secara numerik dan lebih mudah diinterpretasikan 

dibandingkan dengan persamaan GWR [3]. SFCR menggunakan algoritma iteratif dan dapat 

diimplementasikan pada data berukuran besar, serta merupakan pendekatan efektif terhadap 

regresi spasial dengan kondisi koefisien yang tidak stasioner. 

Keanggotaan di lokasi yang berdekatan cenderung memiliki keanggotaan yang sama 

didorong oleh fungsi penalti yang didasarkan pada proses spasial yang dikenal sebagai persamaan 

Potts. Fungsi probabilitas gabungan dari persamaan Potts diberikan oleh: 

𝜋(𝑔1, … , 𝑔𝑛|𝜙) ∝ exp (𝜙 ∑ 𝑤𝑖𝑗𝐼(𝑔𝑖 = 𝑔𝑗)𝑖<𝑗 )   (1) 

dengan 𝑤𝑖𝑗adalah fungsi bobot, 𝜙 mengontrol kekuatan autokorelasi spasial, dan 𝑔1, … , 𝑔𝑛adalah 

parameter keanggotaan. Suatu fungsi objektif yang akan dimaksimumkan secara iteratif 

merupakan fungsi penalized likelihood sebagai berikut: 

𝑄(𝜃, 𝑔) = ∑ log 𝑓( 𝑦𝑖|
𝑛
𝑖=1 𝑥𝑖; 𝜃𝑔𝑖) +  𝜙 ∑ 𝑤𝑖𝑗𝐼(𝑔𝑖 = 𝑔𝑗)𝑖<𝑗   (2) 

dengan 𝜃 adalah parameter struktural yang mencerminkan heterogenitas spasial. Proses iterasi 

akan memperbaharui parameter keanggotaan dan parameter lainnya. 

Penggerombolan yang bersifat hard clustering kemungkinan dapat membatasi akurasi 

estimasi. Selanjutnya untuk mengatasi kesulitan ini, [3] menggunakan pengelompokan fuzzy, yang 

memungkinkan ketidakpastian pengelompokan dengan memperkenalkan bobot yang 

disempurnakan serta ditentukan oleh fungsi likelihood. Selain itu, dipertimbangkan pula 

probabilitas bahwa lokasi ke- 𝑖 termasuk dalam grup 𝑔 dengan: 

 𝜋𝑖𝑔 =
[𝑓(𝑦𝑖|𝑥𝑖;𝜃𝑔)𝑒𝑥𝑝{𝜙 ∑ 𝑤𝑖𝑗𝐼(𝑔=𝑔𝑗)𝑛

𝑗=1;𝑗≠𝑖 }]
δ

∑ [𝑓(𝑦𝑖|𝑥𝑖;𝜃𝑔)𝑒𝑥𝑝{𝜙 ∑ 𝑤𝑖𝑗𝐼(𝑔=𝑔𝑗)𝑛
𝑗=1;𝑗≠𝑖 }]

δ
𝐺
𝑔′=1

   (3) 
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dengan δ mengontrol derajat fuzziness. Dua tuning parameter yaitu jumlah gerombol (𝐺) dan 𝜙 

yang mengontrol kekuatan dependensi spasial. Jumlah gerombol ditentukan berdasarkan informasi 

prior dari data dengan suatu kriteria informasi: 

𝐼𝐶(𝐺) = −2 ∑ log 𝑓( 𝑦𝑖|
𝑛
𝑖=1 𝑥𝑖; 𝜃𝑔𝑖̂̂) + 𝑐𝑛dim (𝜃)    (4) 

dengan 𝑐𝑛 adalah konstanta yang tergantung pada ukuran contoh 𝑛 dan dim (𝜃)  menunjukkan 

dimensi dari 𝜃 yang bergantung pada 𝐺. Secara khusus, digunakan 𝑐𝑛 = log 𝑛 yang mengarah 

pada kriteria BIC. Nilai 𝐺 yang sesuai dipilih sebagai 𝐺̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝜖{𝐺1,..,𝐺𝐿}𝐼𝐶(𝐺), di mana 𝐺1,..,𝐺𝐿 

adalah kandidat dari 𝐺. 

2.3 FGWCR 

FGWC merupakan modifikasi algoritma FCM dengan menambahkan langkah tambahan 

pada setiap iterasi, yaitu menerapkan pembobotan pada nilai keanggotaan gerombol. Pembobotan 

tersebut merupakan pengaruh geografis yang akan mempengaruhi nilai pusat klaster [12]. Berbeda 

dengan metode regresi klasterisasi fuzzy oleh [13] yang hanya menggunakan fuzzy loading tanpa 

memasukkan pengaruh geografis. Metode ini mengimplementasikan efek penurunan jarak melalui 

faktor pembobotan untuk menganalisis penggerombolan data geo-demografi. Setiap area 

diberikan nilai keanggotaan pada setiap gerombol sehingga membantu mengatasi masalah 

kekeliruan ekologi [14]. Metode ini mengadopsi prinsip interaksi spasial dengan 

menggabungkannya ke dalam pembobotan keanggotaan, menyesuaikan nilai keanggotaan 

gerombol berdasarkan efek ketetanggaan sehingga menghasilkan gerombol yang “sadar geografis” 

[14]. Fungsi objektif dapat dituliskan sebagai berikut: 

𝐽𝐹𝐺𝑊𝐶(𝑈, 𝑉; 𝑋) = ∑ ∑ 𝑢𝑖𝑘
δ |𝑣𝑖 − 𝑥𝑘|2𝑛

𝑘=1
𝑐
𝑖=1     (5) 

dengan δ adalah derajat fuzziness, 𝑣𝑖 pusat gerombol, 𝑢𝑖𝑘 adalah derajat keanggotaan dari objek 

terhadap pusat gerombol, 𝑛 adalah jumlah objek, 𝑐 adalah jumlah gerombol, 𝑥𝑘 merupakan titik 

data. Secara umum derajat fuzziness yang optimal digunakan bernilai 2, yaitu saat terjadi 

keseimbangan antara separability (kejelasan klaster) dengan fuzziness [15]. Derajat fuzziness yang 

mendekati nilai 1 berefek menjadi hard clustering, sedangkan bila terlalu besar keanggotaan 

menjadi kabur sehingga tidak ada perbedaan antar klaster [16]. Efek ketetanggaan yang 

digabungkan kedalam algoritma juga akan mempengaruhi pusat gerombol. Pusat gerombol dapat 

ditentukan dengan: 

 𝑣𝑖 =
∑ 𝑢𝑖𝑘

δ𝑛
𝑘=1  𝑥𝑘

∑ 𝑢𝑖𝑘
δ𝑛

𝑘=1

    (6) 

Penggabungan efek ketetanggan tersebut menyebabkan keanggotaan gerombol terhadap suatu area 

tertentu terus diperbaharui secara iteratif. Berikut formula keanggotaan gerombol: 
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µ𝑖
′ = 𝛼µ𝑖 + 𝛽 

1

𝐴
∑ 𝑤𝑖𝑗

𝑛
𝑗 µ𝑗     (7) 

dengan µ𝑖
′ ' adalah keanggotaan gerombol baru untuk area- i, µ𝑖merupakan keanggotaan yang lama, 

nilai 𝛼 + 𝛽 =1 yang merupakan peubah untuk mempengaruhi proporsi antara keanggotaan awal 

dengan keanggotaan terboboti, serta 𝑤𝑖𝑗 adalah bobot spasial. Bobot keanggotaan selanjutya 

menjadi dasar untuk pembobotan persamaan regresi FGWCR. 

2.4  Prosedur Simulasi  

Prosedur simulasi dilakukan dengan memodifikasi penelitian Sugasawa dan Murakami 

(2021) melalui langkah-langkah sebagai berikut: 

1. Menentukan batas 6 klaster 𝑇𝑗𝑘 dan membangkitkan koefisien regresi sebagai berikut: 

𝑇𝑗𝑘 = {𝑠𝑖 = (𝑢𝑖, 𝑣𝑖)|𝑝1𝑗 < 𝑣𝑖 ≤ 𝑝1,𝑗+1, 𝑝2𝑘 < 𝑢𝑖 ≤ 𝑝2,𝑘+1} 𝑖 = 1, . . ,539;  𝑗 = 0,1,2; 𝑘 = 0,1 

𝑝1𝑗 = min(𝑠1) − 0,001 + 𝑗
(max (𝑠1)−min(𝑠1)+0,002)

3
,    𝑗 = 0,1,2,3 

𝑝2𝑘 = min(𝑠2) − 0,001 + 𝑘
(max (𝑠2)−min(𝑠2)+0,002)

2
,   𝑘 = 0,1,2 

𝛽0(𝑠𝑖) = 0,2(𝑝1𝑗 + 𝑝2𝑘) 

𝛽1(𝑠𝑖) = 0,01(𝑝1𝑗
2 + 𝑝2𝑘

2 ) 

𝛽2(𝑠𝑖) = −0,01 + 0,02(𝑝1𝑗 + 𝑝2𝑘) 

𝛽3(𝑠𝑖) = |0,1𝑝1𝑗 + 0,2𝑝2𝑘| 

𝛽4(𝑠𝑖) = −0,01𝑝1𝑗 . 𝑝2𝑘 

𝛽5(𝑠𝑖) = −0,0001𝑝2𝑘. 𝑝1𝑗
2  

𝛽6(𝑠𝑖) = |sin (𝑝1𝑗. 𝑝2𝑘)| 

𝛽7(𝑠𝑖) = |cos (𝑝1𝑗 + 𝑝2𝑘)| 

𝛽8(𝑠𝑖) = 0,0001(−𝑝2𝑘
2 + 𝑝1𝑗

2 ) 

𝜎(𝑠𝑖) = 0,005 + 0,002|−𝑝1𝑗 + 𝑝2𝑘| 

𝜀(𝑠𝑖)~𝑁(0,1) 

2. Membangkitkan  8 peubah penjelas dengan ketentuan sebagai berikut,  

𝑥𝑡 = Փ𝑧𝑡, 𝑡 = 1, . . ,5,7 

𝑥6 = Փ(0,75𝑧2 + √1 − 0,752𝑧6) 

𝑥8 = Փ(0,9𝑧3 + √1 − 0,92𝑧8) 

𝐶𝑜𝑣 (𝑧𝑘(𝑠𝑖), 𝑧𝑘(𝑠𝑗)) = exp (−
||𝑠𝑖 − 𝑠𝑗||

ղ
) , 𝑘 = 1, . . ,8;  𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, . . ,539 

dengan Փ merupakan fungsi distribusi kumulatif normal standar. 
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3. Menentukan nilai peubah respon dari persamaan regresi 

𝑦𝑖 = 𝛽0(𝑠𝑖) + 𝛽1(𝑠𝑖)𝑥1 +. . +𝛽8(𝑠𝑖)𝑥8 + 𝜎(𝑠𝑖)𝜀(𝑠𝑖) ,  𝑖 = 1,2, … 𝑛   (8) 

4. Mendeteksi efek keragaman spasial. Pengujian dapat dilakukan dengan menggunakan 

uji Breusch-Pagan (Anselin 1988) dengan hipotesis nol ragam homogen dan statistik uji 

sebagai berikut: 

𝐵𝑃 =
1

2
𝒇′𝒁(𝒁′𝒁)−𝟏𝒁′𝒇    (9) 

dengan 𝑓𝑖 = (
𝜀𝑖

2

𝜎2 − 1) , 𝒁 adalah vektor amatan peubah dependen, 𝜀𝑖 kuadrat tengah 

galat untuk pengamatan ke- 𝑖, dan  𝜎 merupakan ragam dari 𝜀𝑖. Pengambilan keputusan 

pada uji Breusch-Pagan yaitu apabila nilai 𝐵𝑃 > 𝜒(𝛼;𝑝−1)
2  maka 𝐻0 ditolak. 

5. Menghitung matriks pembobot spasial dengan cara menghitung jarak antar lokasi 

melalui formula jarak Euclidean dan bobot 𝑘 -tetangga terdekat (𝑘 = 5) yaitu: 

𝑑𝑖𝑗 = √(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣)2   (10) 

dengan 𝑢𝑖 merupakan kordinat lintang lokasi ke- 𝑖, 𝑢𝑗  adalah kordinat lintang lokasi ke- 

𝑗, 𝑣𝑖 merupakan kordinat bujur lokasi ke- 𝑖, dan 𝑣𝑗  adalah kordinat bujur lokasi ke- 𝑗. 

Bobot 𝑘-tetangga terdekat ditentukan dengan mengurutkan jarak 𝑑𝑖𝑗, 𝑑𝑖𝑗(1) ≤ 𝑑𝑖𝑗(2) ≤

⋯ ≤ 𝑑𝑖𝑗(𝑛−1). Kemudian ditentukan  𝑘-lokasi tetangga terdekat dari lokasi- 𝑖 yaitu 

𝑁𝑘(𝑖) = {𝑗(1), 𝑗(2), … , 𝑗(𝑘)} dengan nilai 𝑘=1,..., 𝑛 − 1.  

6. Menerapkan prosedur SFCR dengan menentukan kombinasi parameter inisiasi δ dan 𝑔0. 

Setiap kombinasi yang konvergen dilakukan 15 kali hingga didapatkan 180 persamaan 

regresi. 

a) Menghitung bobot keanggotaan gerombol dengan Persamaan (3) 

b) Melakukan update parameter 𝜃(𝑘) dan 𝑔(𝑘) untuk 𝑔 = 1, . . , 𝐺 melalui formula: 

𝜃𝑔
𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑔

∑ 𝜋𝑖𝑔
(𝑘)

log 𝑓( 𝑦𝑖|
𝑛
𝑖=1 𝑥𝑖; 𝜃𝑔)   (11) 

𝑔𝑖
𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑔𝜖{1,..,𝐺}𝜋𝑖𝑔
(𝑘)   (12) 

c) Ulangi dari langkah 6a hingga tercapai nilai konvergen dengan toleransi            

𝜀 = 10−6 yaitu: 

∆𝑘+1=
|𝑄𝑘(𝜃,𝑔)−𝑄𝑘+1(𝜃,𝑔)|

𝑄𝑘+1(𝜃,𝑔)
   (13) 

 ∆𝑘+1 adalah selisih iterasi ke- 𝑘 + 1 dan iterasi ke- 𝑘, 𝑄𝑘(𝜃, 𝑔) merupakan fungsi 

objektif penalti likelihood ke- 𝑘, dan 𝑄𝑘+1(𝜃, 𝑔) adalah fungsi objektif penalti 

likelihood ke- 𝑘 + 1 
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7. Menerapkan prosedur FGWCR dengan menentukan kombinasi parameter inisiasi δ 

dan jumlah klaster. Setiap kombinasi yang konvergen dilakukan 15 kali hingga 

didapatkan 180 persamaan regresi 

a) Menghitung pusat klaster dengan Persamaan (6) untuk memberikan posisi 

representatif dari tiap klaster dalam ruang data, dengan mempertimbangkan 

derajat keanggotaan fuzzy 

b) Melakukan update matriks keanggotaan menggunakan informasi spasial 

dengan Persamaan (7) lalu menyimpan nilai fungsi objektif dan pembentukan 

regresi 

c) Ulangi dari langkah 7a hingga tercapai konvergensi yaitu |𝑢𝑖𝑘 − 𝑢𝑖𝑘−1| < 𝜀, 

dengan 𝜀 = 10−6 

8. Mengevaluasi metode SFCR dan FGWCR dengan menghitung nilai MSE dan MAE 

dugaan koefisien regresi serta RMSE dan 𝑅2 dari dugaan peubah respon,  

 𝑀𝑆𝐸 = ∑
(𝑦𝑖−𝑦𝑖̂)2

𝑛

𝑛
𝑖=1    (14) 

𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1    (15) 

𝑅𝑀𝑆𝐸 = ∑ √
(𝑦𝑖−𝑦𝑖̂)2

𝑛

𝑛
𝑖=1    (16) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅)2𝑛
𝑖=1

  [17]   (17) 

 dengan 𝑦𝑖 adalah nilai aktual ke- 𝑖, 𝑦̂𝑖 nilai prediksi ke- 𝑖, 𝑦𝑖̅ merupakan rata-rata 

nilai aktual, dan 𝑛 merupakan jumlah data. 
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Gambar 1. Diagram alir prosedur simulasi 

  

3 Hasil dan Pembahasan 

Hasil deteksi efek keragaman spasial terhadap 539 data bangkitan seluruh skenario 

menunjukkan bahwa 𝐻0 ditolak dan ragam tidak homogen. Ketidakhomogenan ragam 

menunjukkan ketidakstabilan struktural yang menyebabkan koefisien regresi berbeda beda pada 

setiap lokasi amatan / klaster. Hal ini diatasi dengan metode klaster spasial melalui simulasi. 

Simulasi terhadap 6 klaster dengan nilai-nilai inisiasi parameter dan hasil uji efek keragaman spasial 

ditunjukkan oleh Tabel 1. 
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Tabel 1. Skenario kombinasi inisiasi parameter dan hasil uji efek keragaman spasial 

Skenario ղ 𝜹 p-value Kesimpulan 

Lemah 0,2 1,1 5,53 𝑥 10−26  

Terdapat heterogenitas spasial 
  1,5 3,78 𝑥 10−4 

  2 3,78 𝑥 10−4 

  2,5 1,52 𝑥 10−11 

Moderat 0,6 1,1 3,83 𝑥 10−16 

Terdapat heterogenitas spasial 
  1,5 3,03 𝑥 10−6 

  2 5,67 𝑥 10−6 

  2,5 6,93 𝑥 10−7 

Kuat 1 1,1 4,00 𝑥 10−13 

Terdapat heterogenitas spasial 
  1,5 1,88 𝑥 10−5 

  2 4,00 𝑥 10−13 

  2,5 6.93 𝑥 10−2 

Kombinasi antara autokorelasi spasial dan derajat fuzziness menghasilkan 360 persamaan 

regresi. Autokorelasi spasial lemah (0,2) dan derajat fuzziness 1,1 yang diterapkan pada data 

simulasi menunjukkan hasil yang berbeda pada metode SFCR dan FGWCR. Visualisasi salah satu 

koefisien regresi (Beta 5) data bangkitan menunjukkan terdapat 6 klaster dan metode SFCR dapat 

menangkap keragaman tersebut pada dugaan koefisien regresinya. Terdapat 6 klaster yang 

dihasilkan oleh metode SFCR dan 3 klaster pada metode FGWCR seperti yang ditunjukkan oleh 

Gambar 2. Metode SFCR mampu mempertahankan struktur spasial yang cukup mirip dengan data 

bangkitan. Warna-warni klaster masih menunjukkan konsistensi spasial seperti, klaster berwarna 

merah dan oranye tetap dominan di utara serta warna ungu di selatan. Hal ini menunjukkan bahwa 

pendekatan spasial dengan penalti dalam SFCR cukup efektif menjaga struktur lokal, sekaligus 

menghasilkan segmentasi yang teratur dan jelas. Koefisien regresi pada metode FGWCR juga 

terlihat bergerombol namun tidak tersegmentasi dengan jelas seperti data bangkitan. Jumlah 

klaster yang dapat diidentifikasi metode ini pun jauh lebih sedikit. Hal ini dikarenakan FGWCR 

tidak menerapkan fungsi penalti dalam metodenya sehingga jumlah klaster yang terbentuk hanya 

berdasarkan  kekuatan struktur lokal yang dominan.

 

Gambar 2. Sebaran dugaan koefisien regresi (beta 5) dengan ղ = 0,2 dan derajat fuzziness 1,1 

Seluruh dugaan koefisien regresi kedua metode dievaluasi oleh nilai MSE dan MAE. Semakin 

kecil nilai keduanya, semakin dekat dugaan parameter dengan nilai sebenarnya dan model semakin 

baik [18]. Nilai MSE dan MAE tersebut divisualisasikan oleh diagram kotak garis pada Gambar 
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3. Secara umum metode SFCR menunjukkan nilai MSE dan MAE yang lebih kecil dan stabil 

hampir pada keseluruhan skenario. Hal ini menunjukkan metode SFCR lebih konsisten dan presisi 

dalam memperkirakan parameter. 

 

Gambar 3. Diagram kotak garis dugaan koefisien regresi (ղ = 0,2 dan derajat fuzziness 1,1) 

Adanya pencilan pada metode FGWCR terutama pada beta 0 dan beta 4 serta nilai MSE yang 

besar pada beta 3 dan beta 6 menunjukkan metode FGWCR kurang stabil dalam menduga 

parameter ini. 

Persamaan regresi yang dihasilkan kedua metode dievaluasi oleh nilai koefisien determinasi 

(𝑅2) dan RMSE dari dugaan peubah respon. Nilai 𝑅2 yang semakin mendekati 1 atau 100% 

menunjukkan model yang dihasilkan semakin baik dalam menjelaskan keragaman data. 

Sebaliknya untuk nilai RMSE, semakin kecil nilainya maka semakin baik dan prediksi model 

semakin akurat.  

 

Gambar 4. Diagram pencar RMSE 

Skenario lemah dengan derajat fuzziness 1,1 menghasilkan nilai RMSE 0,289  untuk metode SFCR 

dan 0,658 pada metode FGWCR. Keseluruhan nilai RMSE dapat dilihat pada Gambar 4. Nilai 

RMSE metode SFCR konsisten lebih kecil dibandingkan metode FGWCR. Metode SFCR 
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mengabungkan fuzzy logic, model regresi berbasis klaster, dan pengaruh spasial sehingga model 

yang dihasilkan lebih fleksibel dan adaptif terhadap pola data, terutama jika terdapat struktur lokal. 

Penyesuaian variasi lokal dengan klaster spasial dapat menekan galat yang berimplikasi semakin 

menurunnya nilai RMSE. Terdapat pola nilai RMSE yang menurun seiring meningkatnya derajat 

fuzziness pada metode FGWCR. Kondisi tersebut berkebalikan dengan metode SFCR, semakin 

tinggi nilai δ semakin tinggi pula nilai RMSE. Pada metode FGWCR peningkatan nilai δ 

menyebabkan keanggotaan 𝑢𝑖𝑘 lebih tersebar dan data amatan dapat diberi bobot pada beberapa 

klaster sehingga pengaruh pencilan cenderung berkurang. Hal ini dapat menyebabkan model lebih 

kekar, kesesuaian model lebih baik, dan RMSE menurun. δ meningkatkan pengaruh fungsi 

likelihood dan spasial secara eksponensial pada metode SFCR. Saat δ meningkat keanggotaan 

menjadi lebih tegas mendekati hard clustering sehingga dapat menyebabkan nilai RMSE 

meningkat saat terjadi ketidakcocokan keanggotaan.  

Hasil simulasi menunjukkan bahwa nilai RMSE tertinggi terjadi pada tingkat autokorelasi 

spasial rendah (ղ = 0,2). Hal ini mengindikasikan lemahnya pemanfaatan informasi spasial ketika 

kekuatan spasial rendah. Sebaliknya pada ղ = 0,6 model mencapai performa terbaik, 

menunjukkan adanya keseimbangan optimal antara ketelitian lokal dan kontribusi spasial. Kinerja 

kembali menurun pada ղ = 1 akibat dominasi pengaruh spasial yang cenderung melunakkan 

respon model terhadap variasi lokal.  

Nilai 𝑅2 pada metode SFCR secara konsisten lebih tinggi dibandingkan FGWCR pada 

seluruh kombinasi parameter, menunjukkan kemampuan model yang lebih baik dalam 

menjelaskan variabilitas data. Tabel 2 menunjukkan bahwa pada SFCR, peningkatan parameter ղ 

justru menurunkan 𝑅2, mengindikasikan bahwa kekuatan spasial yang terlalu tinggi dapat 

mengurangi fleksibilitas model.  

Tabel 2. 𝑅2 persamaan regresi 

 ղ 0,2 0,6 1 

 SFCR FGWCR SFCR FGWCR SFCR FGWCR 

𝛅 

1,1 0,99720 0,98548 0,99628 0,98625 0,99479 0,98063 

1,5 0,99709 0,98533 0,99619 0,98610 0,99487 0,98038 

2 0,99696 0,98544 0,99617 0,98624 0,99468 0,98062 

2,5 0,99692 0,98572 0,99611 0,98662 0,99456 0,98114 

Sementara pada FGWCR, nilai 𝑅2 tertinggi dicapai pada ղ = 0,6, menunjukkan bahwa kekuatan 

spasial yang moderat memberikan keseimbangan antara regularisasi dan akurasi lokal. Kedua 

metode dalam persamaan regresinya mampu menjelaskan keragaman respon melalui peubah 

penjelasnya dengan sangat baik. 
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4 Simpulan  

1. Secara konsisten metode SFCR memiliki nilai 𝑅2 yang lebih tinggi dibandingkan 

metode FGWCR pada seluruh kombinasi parameter ղ dan δ, menunjukkan bahwa 

SFCR memiliki kemampuan yang lebih baik dalam menjelaskan variasi data.  

2. Nilai RMSE metode SFCR konsisten berada di bawah metode FGWCR 

menunjukkan metode SFCR lebih akurat dalam memprediksi model. 

3. Pengaruh peningkatan ղ dan δ terhadap data simulasi dengan metode SFCR semakin 

menurunkan nilai 𝑅2, namun pada FGWCR peningkatan δ cenderung memperbaiki 

nilai 𝑅2. 

4. Metode SFCR lebih mampu mempertahankan struktur spasial yang cukup mirip 

dengan data asli terlihat dari jumlah klaster yang terbentuk. 

5. Hasil penelitian ini melibatkan simulasi data spasial berskala besar dan dapat 

diaplikasikan pada data empiris skala kecamatan bahkan desa. Proses klasterisasi 

spasial dan regresi secara simultan mengefisienkan waktu dan sumberdaya. Hal ini 

dapat menjadi masukan metode bagi peneliti atau pemerintah yang membutuhkan 

pemodelan regresi dengan klasterisasi spasial sekaligus. Salah satu contoh penerapan 

dapat diakukan terhadap data kemiskinan atau sebaran penyakit, sehingga 

pemerintah dapat menentukan kebijakan yang efektif dan efisien untuk setiap daerah 

dalam maupun antarklaster.  

Sintak dari metode yang digunakan penulis dalam artikel ini dapat diakses pada 

laman https://github.com/HasanahStk59/sfcr-fgwc. 
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