The Calculation of Time and Cost Estimation on Implementing Box Girder with Balance Cantilever Method in the *Cakung* Fly Over Project

Ryan Dordia Wiratama Metar, Achmad Faiz Hadi Prajitno dan Akhmad Yusuf Zuhdy

Civil Infrastructure Engineering Department, Institut Teknologi Sepuluh Nopember (ITS) Corresponding Author: afaizhp@gmail.com

ARTICLE INFO	ABSTRACT
Article Information Article Received: 2021-08-25 Article Revised: 2022-11-08 Article Accepted:	The Cakung Flyover Development Project is one of the programs of the DKI Jakarta Provincial government, through the Bina Marga of DKI Jakarta Province 2019-2020 which will build several non-level intersections in the form of underpasses and flyovers with the aim of reducing traffic jams in the capital region, more specifically congestion which often occurs in the East Primary Sentra area, namely on the Jatinegara-Bekasi railroad line. The Cakung Flyover is located in I Gusti Ngurah Rai Street and turns towards the new Cakung road by passing the Jakarta-Bekasi railroad crossing. This Flyover has a length of 760 meters and a width of 18 meters with the longest span of 80m from P8 and P9 which turn towards the new Cakung road and is between the railroad
<i>Keywords</i> Village development, lagging village, social, economy, and infrastructure	crossings. This Flyover used the Balance Cantilever Cast in situ method with the traveler form in Box Girder work from P7 to P10. This Applied Final Project discusses about the estimated time and cost needed to complete the Cakung Flyover structure starting from P7 to P10 on the 180- meter box girder work consisting of 32 segments using the balance cantilever method with the traveler form. Based on the analysis carried out, the results were obtained

INTRODUCTION

Indonesia is one of the countries with the fourth most population in the world, which makes it obvious that traffic jam is one of the problems that must be solved by Indonesia as one of the countries with the most densely population, especially in the capital area. In order to face this challenge, the construction of roads and bridges is one of the efforts made by the provincial government of DKI Jakarta to reduce congestion that occurs due to the volume of roads that can no longer accommodate the volume of vehicles. A road or bridge construction project will show maximum results if a plan which includes detailed planning of costs implementation, duration of work, as well as implementation methods in the field.

Flyover (Jembatan Layang) is a bridge over an existing road which functions to connect two sections of the road which are disconnected due to obstacles on a road that has a level crossing. There are so many level crossings on the Jatinegara - Bekasi railroad line which causes traffic problems around the railroad crossings. There are five major level crossings between roads and railroads, of which four level crossings have been upgraded to be non-level crossings so that currently there is only one crossing that needs to be upgraded to be non-level crossing, namely at the Cakung station crossing. The construction of the Cakung Flyover is enabled to break up the congestion points happened in Jalan I Gusti Ngurah Rai due to the level crossing that passes through the Jakarta - Bekasi train line.

On this final project the construction management object which has been planned is the structural work of the Cakung Flyover construction project starting from pillar 7 to pillar 10 with a total length of 181 meters consisting of 32 Box Girder segments using the balance cantilever method with the traveller form. The Flyover construction is located in I Gusti Ngurah Rai street East Jakarta, passing the Jakarta-Bekasi railroad crossing with a length of 760 meters and a width of 18 meters which is divided into two zones, namely zone 1 and zone 2.

LITERATURE REVIEW

A. General

It is an obligation to put review of literature in a paper or report. This chapter contains a meaning of the base theory that used to explain the discussion part on a paper.

B. Balance

Balance cantilever is one of the methods used in constructing cast bridge, in-situ or using precast concrete by applying the benefits of balance cantilever effect so that the structures can handle its own weight without other supports (scaffolding) in which the upper structure construction process is done on the upper part of the

	Cap	Diı	mension ((m)			me (m3)		V.		V	Cast (r	n3)	V.		V.
		Length	Width	Heigh	t		()	Reinfor		· /			Ý Ex	cavation	(m3) I	Formwork (m
	7	11,4	11,4	2,5			24,9		557722			19,342		324,9		114
	' 8	17,3	11,7	3			39,5		596063			36,903		739,5		191,7
F	9	14,5	14,5	3		63	0,75	3,5	596801	7		27,153		630,75	i	188,5
Р	10	11,4	11,4	2,5		32	24,9	5,5	557722	3	3	19,342	3	324,9		114
					Diar	meter	Bera			Panjang			Panjang	dumlah	Total	Berat Total
No.	Kode	Ga	ambar			nm)	(kg/n	a	6 (m)	c (m)	d (m)	e (m)	Unit (m)	Unit (bh)	Panjang (m)	(kg)
				_	(n	110)	(kg/r	a) j (m)	1 (16)	(10)	(111)	[(m)	(0)	(Dh)	1 (m)	1 (68)
1	A.1	- a	¢	D	32	• 1	50 6.31	3 0.20	2.30	9.50			12.00	76	912	5757.77
2	A.2		×~~	D	32	- 1	50 6.31	3 2.98	2.30	0.20			5.48	76	416.48	2629.38
3	A.3	\$	<u>ه</u>	D	32	- 1	50 6.31	3 0.20	11.20	0.20			11.60	76	881.6	5565.84
4	A.4		. e	D	32	· 1	50 6.31	3 11.20					11.20	76	851.2	5373.92
5	B.1	4	¢	D	32	- 1	50 6.31	3 0.20	2.23	9.57			12.00	76	912	5757.77
6	B.2			D	32	- 1	50 6.31	3 2.91	2.23	0.20			5.34	76	405.84	2562.21
7	8.3	×.	v 3	. D	32	. 1	50 6.31	3 0.20	11.20	0.20			11.60	76	881.6	5565.84
8	8.4	·	a	D	32	- 1	50 6.31	3 11.20					11.20	76	851.2	5373.92
9	C.1	۳۹ <u> </u>	b	D	16		1.57	8 0.64	11.2				11.84	24	284.16	448.50
10	D.1	4	<u> </u>	D	16		1.57	8 0.1	2.3	0.1			2.5	1164	2910	4592.96
									1					т	DTAL	43628.12

Table 1. The Calculation of Pile Cap Volume

Picture 1. Requirement of Pile Cap Reinforcement P7

structure without disturbing the construction or the condition on its lower part. The following are the types of construction methods of *balance cantilever* method. 1. *Balance cantilever method* with *launching gantry*.

This method is normally used to the precast concrete bridge and not the result of *in-situ* casting. This method uses one gantry or more which functioned as segments launcher of the existing *box girder*.

2. Balance cantilever method with lifting frame.

This method is almost the same with *launching gantry*, the different can be seen from the utilization of the tool, namely lifting frame to lift the segments of the bridge. 3. *Balance cantilever method* with *crane*.

Basically, this method is the same with *liftring frame method*. The different can be found on the different tools used, namely a crane to lift the segments of the bridge. 4. *Balance cantilever method* with *full-span system*

On this method, the segment lifted is one full-span segment for a span. Therefore, this method is appropriate for a bridge with the condition of the distance between the pedestals are not too far.

5. Balance cantilever method with form traveller

This method is applied to the bridge with in-situ casting method. On this method, form *traveller* has a

function to form the segments of the bridge according to the plan.

C. Working Volume

Working volume is the result of calculating the volume of work in one job which represented in cubic meters (m³). Volume is also often referred as work *cubication*. Therefore, the volume (*cubication*) of a work is not volume (the actual content), but the total volume of working parts in one unit.

D. Budgeting Plan (RAB)

RAB or Budgeting Plan is a method of describing the budgeting plan that must be allocated to a certain job from the beginning to the end of the work. The budgeting plan needs to cover the entire work, including the cost of the materials, tool rental, worker wages, and other costs.

The Unit Price of the Materials and the Labor Wages is varied in every region, therefore, in calculating and preparing the Budgeting Plan in a project must be based on the unit price and labor wages in the market and location of the project.

E. S Curve

S Curve is the plot result of *Barchart*, aimed to make

Table 2	2. Pile Cap Man	power Re	quirement	s for Iron			
No	· ·		Koef Capac the w in 1		of ers	Work used	
1	Foreman	0,0	00706	1		1	
2	Handyma	an 0,0	07063	10		6	
3	Worker	0,0	07067	10		12	
Table 3	Table 3. Pile Cap Formwork Manpower Requirement						
No	Manpower	Koef	Maxim capacity the worker 1 grou	y of Son	etting and stalling orkers	Opening and cleaning workers	
1	Foreman	0,033	1		2	2	
2	Handyman	0,333	10		4	0	
3	Worker	0,666	20		10	20	
Table 4	Table 4. Size Chart and Iron Weight						
	ameter (mm)	Weight	Weight (kg/m)		Cutting Size Cm2		
	-	0.0					

(11111)			
6	0.222	0.28	
8	0.395	0.50	
10	0.627	0.79	
12	0.888	1.13	
14	1.208	1.54	
16	1.578	2.01	
19	2.226	2.84	
22	2.984	3.80	
25	3 853	4 91	

(Source : Ir. A. Soedrajat S, 1984) [1]

Table 5. Labor working hours needed to make 100 bent and hook	
---	--

Size of Concrete	Using l	Hand	Using Machine		
Iron	Bent	Hook	Bent	Hook	
IIOII	(Hour)	(Hour)	(Hour)	(Hour)	
12 mm below	2 - 4	3 - 6	0.8 - 1.5	1.2 - 2.5	
16 mm					
19 mm	2.5 - 5	4 - 8	1 - 2	1.6 - 3	
22 mm					
25 mm	3 - 6	5 - 10	1.2 - 2.5	2 - 4	
28.5 mm	3-0	5 - 10	1.2 - 2.3	2 - 4	
31.75 mm	4 - 7	6 - 12	1.5 - 3	2.5 - 5	
38.1 mm	4-/	0 - 12	1.5 - 5	2.3 - 3	
(Courses In A Coodesi	of C 1004) [1	1			

(Source : Ir. A. Soedrajat S, 1984) [1]

it easier to observe the incoming activity in a certain range of project implementing time. (Callahan, 1992).

S Curve can be used as the tester for economic value and setting the burden on resources, as well as placement, testing the combination of activities against working plans, as a comparison of the actual performance of target plan or budgeting plan for the purpose of evaluating funds for analyzing deviation occur. The characteristics of working development can be depicted in a form of cumulative percentage of conduction prestation value or from the production, value of money that used to buy something, quantity numbers of working volumes, as well as the requirements from every resource and from many other forms.

The letter S on the phrase S Curve is caused by the activities during the project, those are as follows:

- 1. Progress which was slow on the beginning
- 2. Followed by activities that run fast in a supposed to be a long period of time.
- 3. Finally, the speed of the progress decreased and stop at the end point.

From the explanation above, it can be concluded that S curve should be run slowly in the beginning of the project, and then getting faster in the middle and slower at the end of the project schedule. The shape of the graph needs to be made very well and carefully since it will affect the flow of money during the project as well as the scheduling of materials arrival and many others.

METHODOLOGY

A. Preparation Stage

Preparation stage is a stage in which the writer seeks for information about the title of the project. This stage consists of:

a. Administration Preparation

The quality factor of human resources consists of the variable level of education, the population dependency ratio, and the number of workers.

b. Collecting Data and Literature

The data required for this Final Project are image data (DED), location of the project, job specification, DKI Jakarta Main Activity Unit Prices and books to support data processing on this Final Projects, those are as follow:

- 1. Collecting the theoretical framework of project management
- 2. Reviewing rules and regulations
- 3. Studying the preparation of scheduling project
- 4. Studying the calculation for the budgeting plan

B. Data Study

1. Technical Drawing Analysis

The technical drawing is the main data which is needed in a project and applied on this Final Project. From the technical drawing, the amount of volume and materials needed for the construction of the *Cakung Fly Over* can be obtained. After figuring out the number of volumes and materials specification, the total cost or budgeting plan (RAB) needed to carry out the project will also be obtained.

2. Determining the Working Items

Determining the main structural items or types of the works in the Cakung Fly Over which includes the works of *Borepile, pile cap, pier, pierhead, Form Traveller Balance Cantilever, Box Girder.*

- 1). Preparation of the Work
 - a. The work on land clearing and demolition
 - b. The work on tools mobilization
 - c. Procurement of executive temporary office
 - d. Procurement of materials warehouse
 - e. The work on measurement
- 2). Borepile Foundation Work
 - a. Drilling with *rotary drilling*
 - b. Casing installation
- c. Boredpile reinforcement installation
- d. Casting with tremi pipe

e. Checking the concrete volume on the *boredpile*.3). *Pile Cap Work*

- a. Digging the ground according to the planned depth at predetermined coordinate point
- b. Cutting the *bored pile* concrete based on the evaluation which has been conducted

Size of Concrete Iron		Reinforcing Bars Length	
Size of Concrete Iron	Below 3 m	3 - 6 m	6 - 9 m
1 /2" (12 mm)	3.5 - 6	5 -7	6 - 8
5/8" (16 mm)			
3/4" (19 mm)	4.5 - 7	6 - 8.5	7 - 9.5
7/8" (22 mm)			
1" (25 mm)	5.5 - 8	7 - 10	8.5 - 11.5
1 1/8" (28.5 mm)	5.5 - 8	7 - 10	8.3 - 11.5
1 1/4" (31.75 mm)	6.5 - 9	8 - 12	10 - 14
1 ½" (38.1 mm)	0.3 - 9	0 - 12	10 - 14

(Source : Ir. A. Soedrajat S, 1984)

Table 7. Estimated Mold Requirements every 10m2

Types of the mold	Wood	Nail, Bolt, and Wire (Kg)
1. Foundation/Bridge Aisle	0.46 - 0.81	2.73 - 5
2. Wall	0.46 - 0.62	2.73 - 4
3. Floor	0.41 - 0.64	2.73 - 4
4. Roof	0.46 - 0.69	2.73 - 4.55
5. Pillars	0.44 - 0.74	2.73 - 5
6. Pillar Head	0.46 - 0.92	2.73 - 5.54
7. Blocks	0.69 - 1.61	3.64 - 7.27
8. Stairs	0.69 - 1.38	3.64 - 6.36
9. Pillars Angle/Carved* Blocks	0.46 - 1.84	2.73 - 6.82
10. Windows and lintel*	0.58 - 1.84	3.18 - 6.36

(Source : Ir. A. Soedrajat S, 1984) [1]

Table 8. Working Hours Koefisien every 10 m2

Turnes of the wooden mold	Working Hours per 10m2 mold area			
Types of the wooden mold	Setting	Installing	Dismantling	
1. Foundation/Bridge Aisle	3 - 7	2 - 4	2 - 4	
2. Wall	5 - 9	3 - 5	2 - 5	
3. Floor	3 - 8	2 - 4	2 - 4	
4. Roof	3 - 9	2 - 5	2 - 4	
5. Pillars	4 - 8	2 - 4	2 - 4	
6. Pillar Head	5 - 11	3 - 7	2 - 5	
7. Blocks	6 - 10	3 - 4	2 - 5	
8. Stairs	6 - 12	4 - 8	2 - 5	
9. Pillars Angle/Carved* blocks	5 - 11	3 - 9	3 - 5	
10. Windows/Lintel*	5 - 10	3 - 6	3 - 5	

(Source : Ir. A. Soedrajat S, 1984) [1]

- c. Lean concrete casting
- d. Installation of Pile Cap reinforcement
- e. Installation of *pile cap* formwork
- f. *Pile Cap* casting
- 4). Pier Work
 - a. Installation of pier reinforcement
 - b. Installation of *pier* formwork
 - c. Casting of the pier per segments according to the implementation method
 - 5). Pierhead Work
 - a. Installation of Shoring
 - b. Installation of pier head formwork
 - c. Installation of pier head reinforcement
 - d. Pierhead Casting process in stages.
 - 6). Pot Bearing Work
 - a. Installation of pot bearing formwork
 - b. Casting on the pot bearing based on the implementation method.
 - c. Installation of LRB
 - 7). Form Traveller Balance Cantilever Work
 - a. Installation work of form traveller
 - b. Launching work of Traveller

8). Box Girder Work

- a. Launching work of traveller
- b. Installation work of box girder reinforcement

- c. Casting work of box girder
- d. Stressing work of box girder
- e. Curing work
- 3. Preparation of Implementation Method

Implementation method is a description of the procedures and techniques for carrying out work.

obtained from the preparation of types of work in order to get an effective and efficient time. From the discussion above, it can be known which of the activities should be done first or carried out together based on the literature and project data.

C. Calculation

The calculation stage is a calculation method in planning the project in the form of productivity, unit price calculations, or the calculation of the duration to build the Cakung *Fly Over*.

1. Calculation of Work Productivity

Work productivity can be described as the calculation of the total duration of each item or type of work by combining the workers and tools with the aim of getting an effective and efficient duration/time.

2. Calculation of Budgeting Plan

The calculation of budgeting plan (RAB) is gained from calculating the volume of technical or planning

Hour Hour Hour Hour Hour Hour Hour Hour	6300 6300 1260 4200	Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour Hour Hour Hour	969 3150 Pro 6300 6300 1260 4200 Pro 12600 8400 1482	Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour Hour Hour Hour	3150 Pro 6300 6300 1260 4200 Pro 12600 8400 1482	Pieces/day oductivity Pieces/day Pieces/day Pieces/day Dieces/day Pieces/day Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour Hour Hour	Pro 6300 6300 1260 4200 Pro 12600 8400 1482	oductivity Pieces/day Pieces/day Pieces/day Pieces/day Diuctivity Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour Hour	6300 6300 1260 4200 Pro 12600 8400 1482	Pieces/day Pieces/day Pieces/day Pieces/day oductivity Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour Hour	6300 6300 1260 4200 Pro 12600 8400 1482	Pieces/day Pieces/day Pieces/day Pieces/day oductivity Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour Hour	6300 1260 4200 Pro 12600 8400 1482	Pieces/day Pieces/day Pieces/day oductivity Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour Hour	1260 4200 Pro 12600 8400 1482	Pieces/day Pieces/day oductivity Pieces/day Pieces/day Pieces/day	
Hour Hour Hour Hour	4200 Pro 12600 8400 1482	Pieces/day oductivity Pieces/day Pieces/day Pieces/day	
Hour Hour Hour	Pro 12600 8400 1482	oductivity Pieces/day Pieces/day Pieces/day	
Hour Hour	12600 8400 1482	Pieces/day Pieces/day Pieces/day	
Hour Hour	12600 8400 1482	Pieces/day Pieces/day Pieces/day	
Hour Hour	8400 1482	Pieces/day Pieces/day	
Hour	1482	Pieces/day	
Hour	5040	Pieces/day	
m2	Product	tivity m2 / day	
		98	
		163	
		140	
	140		
t	Unit Price	Description	
s	174.748	HSPK 2020	
s	183.883	HSPK 2020	
	183.884	HSPK 2020	
	183.834	HSPK 2020	
	183.834	HSPK 2020	
	211.379	HSPK 2020	
S		HSPK 2020	
	183.834		
y y y	ys ys ys ys	ys 183.884 ys 183.834 ys 183.834 ys 183.834 ys 211.379	

drawings and based on the basic unit price or carefully assumed prices related to project implementation. To make it easier to gain the cost for the project, it is necessary to describe the types of work on the construction of Cakung *Fly Over*.

3. Preparation of P Network Planning

The preparation of *network planning* is aimed to determine the critical path pf the project. The critical path shows that the work/activities on that path is required to be on time, which is not late in the starting and finishing point. It is necessary to have a sequences arrangement to obtain maximum results on *Network Planning*, so it can minimize critical paths on the works items of the *Cakung Fly Over*.

4. Compiling the S Curve

After calculating the budgeting plan and preparing the Network Planning, the S curve calculation and compilation can be made. On the S curve diagram, the focus is on monitoring the implementation of the project in the field, especially in the term of cost and work performance. In order to obtain a maximum result of S curve, it is necessary to pay attention to the scheduling of materials, labor, and equipment used on the project. The S curve should be done as good as possible to determine the project completion time, determine the amount of project implementation costs and the time needed for materials and tools which are going to be used.

DISCUSSIONS

A. S Curve

The calculation of the working volume on the project is gained from the calculation of technical image analysis. Below is the example of the volume on pile cap work. Shown on Table 1 and Image 1.

Volume Calculation:

-	Volume	= p x l x t	
-	Ironing	= total weight (kg) / 7850	
		= (m3)	
-	Formwork	= 2 x (p x 1) x t	
-	Concrete Calculation	on = Volume – Ironi	ing
	Volume		

B. Productivity Calculation

1. Ironing Manpower Requirements

The requirements for the Pile Cap ironing manpower are shown on the Table 2.

- 2. Formwork Manpower Requirements The requirements of Formwork Manpower are shown on the Table 3.
- Ironing Productivity Calculation Size and Iron weight chart is shown on the Table 4. Meanwhile the working hours of the workers to make 100 bend and hook can be seen from Table 5. The working hours to create 100 pieces of

Table 14. Materials Pricelist

Table 14. Materials Pricelist						
No	Position	Unit	Unit Price	Description		
	BJT D - 40					
1	Reinforcing	Kg	12.693	HSPK 2020		
	Screw Steel BJT	U				
2	Concrete wire	Kg	26.200	HSPK 2020		
3	Wire nail	Kg	38.800	HSPK 2020		
4	Ply Wood 1,2 x	-	100 100	LICDY 2020		
4	2,4 x 0,9	Lbr	108.180	HSPK 2020		
-	Working Floor	2	50.010	LICDK 2020		
5	Concrete	m3	59.019	HSPK 2020		
6	Concrete K - 175	m3	740.000	Adhimix		
7	Concrete K - 250	m3	835.000	Adhimix		
8	Concrete K - 300	m3	885.000	Adhimix		
9	Concrete K - 350	m3	935.000	Adhimix		
10	Concrete K - 400	m3	985.000	Adhimix		
11	Concrete K - 500	m3	1.075.000	Adhimix		
				Hengshui		
	Lead Rubber			Yundong		
12	Bearing	Unit	6.525.000	Rubber		
	Dearing			Products		
				Co., Ltd.		
	Form Traveller	Set /				
13	Balance	days	10.000.000	Journal		
	Cantilever	aays				
				ITS Journal		
14	Strand diameter	Unit	27.600	2013		
	12,7 mm			konversi		
				2020		
	*** 1 4 1	G . (ITS		
16	Wedges Anchor	Set /	104.000	Journal2013		
	Block	days		konversi		
	a III			2020		
17	Srayer Ultra	Unit	500.000	Website		
	Tank CBA	20				
	S Silva Curina	20 liter				
18	S Sika Curing	/ /	340.000	Website		
	Compound	unit				
		unn				

reinforcement can be found in Table 6. Moreover, the need estimation of mold per 10m2 is shown in Tabel 7. Coefficient Working Time every 10 m2 is shown in Table 8.

- C. Calculation of Duration
- 1. Pile Cap Ironing or Reinforcing Duration
- a. Cutting

$$D32 = \frac{1442 \ pieces}{5040 \ Pieces/days} =$$

$$= 0,29 \ days$$

$$D25 = \frac{292 \ pieces}{6300 \ Pieces/days} =$$

$$= 0,05 \ days$$

$$D16 = \frac{2376 \ pieces}{8400 \ Pieces/days} =$$

$$= 0,28 \ days$$
Cutting Duration = D32 + D25 + D16
$$= 0,62 \ hari$$

b. Bending

$$D32 = \frac{1060 \text{ pieces}}{6300 \text{ Pieces/days}} = 0,17 \text{ days}$$
$$D25 = \frac{0 \text{ pieces}}{6300 \text{ Pieces/days}} = 0,00 \text{ days}$$

Table;	15.	Daftar	Harga	Sewa	Alat

rabic,	15. Daltai Haig	a bewa i na		
No	Position	Unit	Unit Price	Description
1	Borepile Machine	Days	257.502	Permen PU 28 thn 2016 Konversi 2020 [2]
2	Tremie Pipe	m'	40.000	CV. Sokko Pondasi
3	Scaffolding 190 cm x 190 cm	Set/month	278.000	CV. Mitra Solusi Konstruksi
4	Excavator	Hours	180.251	Permen PU 28 thn 2016 Conversion 2020 [2]
5	Hydraulic Crane 60t	Hours	2.500.000	anekawajasa.com
6	Dump Truck	Days	288.402	Permen PU 28 thn 2016 Conversion 2020
7	Truck Mixer	Days	257.501	Permen PU 28 thn 2016 Conversion 2020 [2]
8	Concrete Pump	Days	3.500.000	Readi Mix Jabodetabek
9	Concrete Vibrator	Days	1.000.000	Readi Mix Jabodetabek
10	Set Bar Bender & Bar Cutter	Days	283.333	CV. Sejati Teknik
11	Bar Roller	Days	166.666	CV. Sejati Teknik
12	Stressing Jack	Days	176.500	Journal ITS 2013 Conversion 2020

$$D16 = \frac{4704 \text{ pieces}}{12600 \text{ Pieces/days}} = 0.37 \text{ days}$$

Bending Duration = D32 + D25 + D16
= 0.54 days

c. Installing

$$D32 = \frac{1442 \ pieces}{969 \ Pieces/days} =$$

$$= 1,48 \ days$$

$$D25 = \frac{292 \ pieces}{1260 \ Pieces/days} =$$

$$= 0,23 \ days$$

$$D16 = \frac{2376 \ pieces}{1482 \ Pieces/days} =$$

$$= 1,6 \ days$$
Installing Duration = D32 + D25 + D16

$$= 3,32 \ days$$

d. Hooking

$$D32 = \frac{1828 \ pieces}{3150 \ Pieces/days}$$

= 0,58 days
$$D25 = \frac{146 \ pieces}{4200 \ Pieces/days}$$

= 0,03 days
$$D16 = \frac{0 \ pieces}{5040 \ Pieces/days}$$

= 0 days
Hooking Duration = D32 + D25 + D16
= 0,61 \ days

a) Fabrication Duration Fabrication = Cutting + Bending

No	COMPONENT	UNIT	QUAN ESTIM			PRICE Rp.)	DURATION(Days)	TOTAL PRICE (Rp.)
А	POWER		LSTIN	AHON	(1	(p.)		(Rp.)
1	Worker	Oh		12,00		174.748	2	4.193.95
2	Blacksmith	Oh		6,00		183.834	2	2.206.00
3	Foreman	Oh		1,00		211.379	2	422.75
5		AL PRICE FO	R THE WOI			211.379	2	6.822.71
В	MATERIALS	ALINCLIO	K IIIL WOI	AKLK				0.022.71
D	BJTD – 40 Reinforcing Scree							
1	Steel	" kg		135870,23		12.693		1.724.635.87
2	Concrete wire	kg		2038,06		26.200		53.397.05
2		L PRICE FOR	THE MAT			20.200		1.778.032.93
С	TOOLS							111701002170
1	Bar bender & Bar Cutter	Dyas		6		283.333	2	3.399.99
2	Supporting mat	Ls		2		200.000	-	0.077177
2		CE FOR THE	TOOI	2		-	-	3.399.99
D					C)			
D	TOTAL PRICE OF THE WOR		CIAL AND I	OOL(A + B +	C)			1.788.255.64
E F	OVERHEAD PROFIT 15% x I)						268.238.34 2.056.493.99
Г	UNIT WORK PRICE (D + E)							2.056.495.99
able	17. Formwork Pile Cap Fabrication	on AHSP						
				QUANTI	Y	UNIT		TOTAL PRICE
No	COMPONENT		UNIT	ESTIMATI		PRICE	DURATION(Days)	(Rp.)
				Loinnii	011	(Rp.)		(11.)
А	POWER							
1	Worker		Oh	2	0,00	174.748	2	6.989.920
2	Woodcarver		Oh		4,00	183.834		1.470.672
3	Foreman		Oh		4,00	211.379	2	1.591.032
		TAL PRICE F	OR THE W	ORKERS				10.151.624
В	MATERIAL							
1	Ply Wood L 2 x 24 x 0.9		lbr		2,00	108.180		22.934.160
		FAL PRICE F	OR THE MA	ATERIAL				22.934.160
С	TOOLS							
1	Supporting tool		Ls		6	-		
	TOTAL	PRICE FOR 7	THE TOOL					
D	TOTAL PRICE OF THE WO	ORKER, MAT	ERIAL AND	D TOOL (A + B	3 + C)			33.085.784
Е	OVERHEAD PROFIT 15%	x D						4.962.868
F	UNIT WORK PRICE (D + E	2)						38.048.652
able	 Installing Pile Cap Reinforcer 	ment AHSP				UNIT		
No	COMPONENT		UNIT	QUANTI	TY	PRICE		TOTAL
INO	COMPONENT		UNII	ESTIMAT	ION		DUKATION(Days	PRICE (Rp.)
А	POWER					(Rp.)		
1	Worker		Oh		20,00	174.7	48 4	4 8.387.904
2	Blacksmith		Oh		6,00	183.8		
3	Foreman		Oh		1,00	211.3		
5		OTAL PRICE		WORKER	1,00	211.5		13.645.436
В	MATERIAL							
		OTAL PRICE	FOR THE M	IATERIAL				
С	TOOL							
1	Supporting tools		Ls		1		-	
	<u>T</u> OTA	L PRICE FOR	THE TOOL					
D	TOTAL PRICE OF THE WO	ORKER, MAT	ERIAL ANI	D TOOL (A + E	B + C			13.645.43
E	OVERHEAD PROFIT 15%			, · · -				2.046.81

= 0,62 days + 0,54 days = 2 days b) Installing Duration	c. Demolishing Demolishing = =	$\frac{608,5 m^2}{560 m^2/days}$ 1 days
Fabrication = Installing + Hooking	d. Repairing	
= 3,32 days + 0,61 days = 4 days.	Repairing =	$\frac{608,5 m^2}{560 m^2/\text{days}}$
 Pile Cap Formwork Duration a. Setting Setting ^{608,5 m²}/₂ 	= 3. Pile Cap Casting Dur a. Production Capac	
Setting $=\frac{606,5 m}{392 m^2/days}$ = 2 days	Concrete Pump. Tool Capacity (V)	$= 8 m^{3}$
b. Installing	Tool efficiency factor (F Cycle Time (Ts1)	a) = 0.83 = minutes
Installing $=\frac{608,5 m^2}{653 m^2/days}$	Tool Setting (T1)	= 15 minutes
= 1 days	Casting (T2)	= 10 minutes

2.

A208

Table 22.	Calcula	tion of	Cost and	Duration	Recapitul	ation

No	Work Description	Volume	Unit Weight	Duration	Price
-	PRE	PARATION WORK			
I	Preparation and Cleaning			1	1 40 200 000
1	Mobilization	2259.00	2	1	140.300.000
2	Land Cleaning	3258,00	m2	4	19.494.105
п	Bored pile Work	R STRUCTURE WORK			
1	Borepile Reinforcement Fabrication	527466,79	kg	5	7.998.652.220
2	Tremi Pipe Fabrication	1692,00	m	4	99.068.866
3	Borepile Drilling	1902,00	m	6	368.744.597
4	Borepile Reinforcement	527466,79	kg	8	62.769.006
5	Tremie Pipe Installation	1692,00	m	4	21.236.866
6	Borepile Casting	1593,22	m3	5	1.741.765.633
7	Soil Excavation	2020,05	m3	1	2.654.401
8	Borepile Piece	108,00	Dots	16	45.053.757
ш	Pile cap Work	100,00	2010	10	1010001101
1	Work Floor Casting	71,67	m3	1	64.488.367
2	Pile Cap Reinforcement Fabrication	135870,23	kg	2	2.056.493.993
3	Pile cap Formwork Fabrication	608,20	m2	2	38.048.652
4	Installation of Pile Cap Reinforcing	135970,23	kg	4	15.692.251
5	Installation of Pile Cap Formwork	608,20	m2	1	5.837.184
6	Pile cap Casting	2002,74	m3	5	2.363.261.086
7	Pile Cap Formwork Demolishing	608,20	m3	2	9.983.095
IV	Pillar Work				
1	Pier Reinforcement Fabrication	303348,61	kg	2	4.588.665.160
2	Pier Formwork Fabrication	1159,60	m3	4	73.439.831
4	Installation of Pier Reinforcement	303348,61	kg	12	94.153.508
5	Installation of Pier Formwork	1159,60	m2	2	42.365.568
6	Pier Casting	891,47	m3	2	1.093.735.458
7	Demolishing Pier Formwork	1159,60	m3	5	24.957.737
9	Landfill	2020,05	m3	1	2.546.401
V	Pierhead Work	220202.04		2	
1	Pierhead Reinforcement Fabrication	330393,94	kg	3	5.007.431.778
2	Pierhead Formwork Fabrication	1992,64	m3	9	138.610.505
3	Installation of Pierhead Reinforcement	330393,94	kg	15	117.691.886
4	Installation of Pierhead Formwork	1992,64	m3	5	124.136.819
5	Pierhead Casting	1324,95	m3	3	1.626.721.225
6	Demolishing Pierhead Formwork	1992,64	m3	8	39.932.379
VI	Pot Bearing Work	STRUCTURE WORK			
1	Pot Bearing Reinforcement Fabrication	2113,08	kg	1	34.860.760
2	Pot Bearing Formwork Fabrication	7,33	m3	1	972.175
3	Installation of Pot Bearing Reinforcement	2113,08	kg	1	2.083.074
4	Installation of Pot Bearing Formwork	7,33	m3	1	655.455
5	Pot Bearing Casting	1,88	m3	1	12.621.357
6	Demolishing Pot Bearing Formwork	7,33	m3	1	444.046
7	Installation of Lead Rubber Bearing	6,00	unit	1	47.105.574
VII	Box Girder Work				
1	Segment 1 Form Traveller Work	4	set	3	1.115.292.695
2	Segment 1 Box Girder Reinforcement Fabrication	48078,52	kg	1	735.299.246
3	Segment 1 Box Girder Formwork Fabrication	947,07	m2	4	64.259.113
4	Installation of Segment 1 Box Girder Reinforcement		kg	3	23.538.377
5	Installation of Segment 1 Box Girder Formwork	947,07	m2	3	17.511.551
6	Segment 1 Box Girder Casting	373,72	m3	1	503.973.483
7	Segment 1 Box Girder Curing	947,07	m2	2	3.973.861
8	Stressing Segment 1 Box Girder	2622	strand	3	124.748.150
9	Demolishing Segment 1 Box Girder Formwork	947,07	m2	4	19.966.190
10	Segment 2 Form Traveller Work	4	set	3	1.069.292.685

Cycle Time $(Ts1) = (T1+T2) \times Fv = 25$ minutes	
Cap. Prod/hours (Q1) = $(V \times Fa \times 60)/Ts1 = 15,94$	
m ³ /hours	
Tool Coefficient = 1: Q1 = $0,0628$ hours	
Concrete Vibrator	
The production capacity of concrete vibrator is	
customized based on the production capacity of concrete	
pump	
Cap. Prod/hours (Q2) = $(V \times Fa \times 60)/Ts2 = 15,94$	
m ³ /hours	
Tools Coefficient = 1 : Q2 =	
0,0628 hours	
b. Casting Duration	
Duration - Volume -	

Duration = $\frac{volume}{Concrete Pump Productivity x amount x Tk}$ =

 $=\frac{2002,74\,m^3}{15,94x\,4\,x\,7}$

= 5 days

D. The Calculation of Individual Worker Price

On the Table 13 until Table 22 shown the calculation of individual worker price

CONCLUSIONS AND SUGGESTIONS

A. Conclusions

Based on the description and discussion of this Final Project, some conclusions can be drawn, those are as follows:

1. Implementation Method of the Cakung Fly Over Construction Project with the Balance Cantilever

Table 22. Continuation of Calculation of Cost and Duration Recapitulation

able 22. Col	ntinuation of Calculation of Cost and Duration Recapitulation	on			
No	Work Description	Volume	Unit Weight	Duration	Price
11	Segment 2 Box Girder Reinforcement Fabrication	45900,26	kg	1	698.608.236
12	Segment 2 Box Girder Formwork Fabrication	916,07	m2	4	62.920.183
13	Installation of Segment 2 Box Girder Reinforcement	45900,26	kg	2	15.692.251
14	Installation of Segment 2 Box Girder Formwork	916,07	m2	3	17.511.551
15	Segment 2 Box Girder Casting	351,7	m3	1	476.747.459
16	Segment 2 Box Girder Curing	916,07	m2	2	3.744.762
17	Segment 2 Box Girder Stressing	2451	strand	3	118.244.210
18	Demolishing Segment 2 Box Girder Formwork	916,07	m2	4	19.966.190
19	Segment 3 Form Traveller Work	4	set	3	1.115.292.685
20	Segment 3 Box Girder Reinforcement Fabrication	47770,73	kg	1	730.667.293
21	Segment 3 Box Girder Formwork Fabrication	992,51	m2	5	72.059.336
22	Installation of Segment 3 Box Girder Reinforcement	47770,73	kg	2	15.692.251
23	Installation of Segment 3 Box Girder Formwork	992,51	m2	3	17.511.551
23 24	Segment 3 Box Girder Casting	351,7	m3	1	476.747.459
25	Segment 3 Box Girder Curing	992,51	m2	2	3.894.202
26	Segment 3 Box Girder Stressing	2318	strand	3	113.185.590
20	Demolishing Segment 3 Box Girder Formwork	992,51	m2	4	19.966.190
28	Segment 4 Form Traveller Work	4	set	3	1.069.292.685
28 29	Segment 4 Box Girder Reinforcement Fabrication	46795,41	kg	1	715.989.436
29 30			m2	4	
	Segment 4 Box Girder Formwork Fabrication	969,23			65.216.529
31	Installation of Segment 4 Box Girder Reinforcement	46795,41	kg	2	15.692.251
32	Installation of Segment 4 Box Girder Formwork	969,23	m2	3	17.511.551
33	Segment 4 Box Girder Casting	353,66	m3	1	479.172.881
34	Segment 4 Box Girder Curing	969,23	m2	2	3.848.689
35	Segment 4 Box Girder Stressing	2356	strand	3	114.630.910
36	Demolishing Segment 4 Box Girder Formwork	969,23	m2	4	19.966.190
37	Segment 5 Form Traveller Work	4	set	3	1.207.292.685
38	Segment 5 Box Girder Reinforcement Fabrication	54392,47	kg	1	830.319.096
39	Segment 5 Box Girder Formwork Fabrication	1041,91	m2	5	74.193.348
40	Installation of Segment 5 Box Girder Reinforcement	54392,47	kg	4	31.384.503
41	Installation of Segment 5 Box Girder Formwork	1041,91	m2	3	17.511.551
42	Segment 5 Box Girder Casting	333,88	m3	1	454.721.376
43	Segment 5 Box Girder Curing	1041,91	m2	2	3.990.783
44	Segment 5 Box Girder Stressing	2280	strand	3	111.740.270
45	Demolishing Segment 5 Box Girder Formwork	1041,91	m2	4	19.966.190
46	Segment 6 Form Traveller Work	4	set	3	1.207.292.685
47	Segment 6 Box Girder Reinforcement Fabrication	51944,06	kg	1	793.472.541
48	Segment 6 Box Girder Formwork Fabrication	1019,18	m2	5	73.211.474
49	Installation of Segment 6 Box Girder Reinforcement	51944,06	kg	4	31.384.503
50	Installation of Segment 6 Box Girder Formwork	1019,18	m2	3	17.511.551
51	Segment 6 Box Girder Casting	358,35	m3	1	484.966.980
52	Segment 6 Box Girder Curing	1019,18	m2	2	3.946.345
53	Segment 6 Box Girder Stressing	2318	strand	3	113.185.590
54	Demolishing Segment 6 Box Girder Formwork	1019,18	m2	4	19.966.190
55	Segment 7 Form Traveller Work	4	set	3	1.207.292.685
56	Segment 7 Box Girder Reinforcement Fabrication	56910,27	kg	1	868.210.013
57	Segment 7 Box Girder Formwork Fabrication	998,44	m2	5	72.315.225
58	Installation of Segment 7 Box Girder Reinforcement	335,62	kg	4	31.384.503
59	Installation of Segment 7 Box Girder Formwork	998,44	m2	3	17.511.551
60	Segment 7 Box Girder Casting	335,62	m3	1	456.689.925
61	Segment 7 Box Girder Curing	998,44	m2	2	3.905.783
62	Segment 7 Box Girder Stressing	2508	strand	3	120.412.190
63	Demolishing Segment 7 Box Girder Formwork	998,44	m2	4	19.966.190
64	Segment 8 Form Traveller Work	4	set	3	1.207.292.685
65	Segment 8 Box Girder Reinforcement Fabrication	53024,26	kg	1	809.728.579
66	Segment 8 Box Girder Formwork Fabrication	981,19	m2	5	71.570.347
67	Segment 8 Box Girder Reinforcement Fabrication	53024,26	kg	4	31.384.503

Method for the Box Girder work carried out by 4 groups of workers on several main structural works. For the Box Girder work using the Traveler Form, it is divided into 8 segments consisting of 4 box girder segments for each segment which is done in sequences.

- 2. The target time for completing the project exceeds the time limit of the project time planning, namely for 6 months.
- 3. From the description of the implementation and scheduling methods that have been planned, it is obtained that the duration of the structural work of the Cakung Fly Over Development Project with the Balance Cantilever Method on the Box Girder work on the preparation work was completed within 5 days.

On the upper and lower structure work was completed within 304 days. Assuming that on Saturday and Sunday is a normal working hours which is not counted as overtime, namely 7 hours of work per day. starting at 08.00-16.00 and 1 hour break at 12.00-13.00.

- 4. The implementation costs required in the Cakung Fly Over Development Project with the Balance Cantilever Method on the Box Girder work with the attached work details.
- 5. These costs do not include indirect costs and general OSH costs. In this Final Project, it is assumed that indirect OSH costs are 2.5% of the total structure cost so that an indirect OSH cost value of Rp. 1,038,352,979, and on the same time a total

Tabel 22. Continuation of Calculation of Cost and Duration Recapitulation

No	Work Description	Volume	Unit Weight	Duration	Price
68	Installation of Segment 8 Box Girder Formwork	981,19	m2	3	17.511.551
69	Segment 8 Box Girder Casting	321,74	m3	1	439.714.790
70	Segment 8 Box Girder Curing	981,19	m2	2	3.872.071
71	Segment 8 Box Girder Stressing	2622	strand	3	124.748.150
72	Demolishing Segment 8 Box Girder Formwork	981,19	m2	4	19.966.190
73	Middle Closure Traveller Form Work	4	set	3	563.292.685
74	Segment Middle Closure Reinforcement Fabrication	8749	kg	1	143.421.577
75	Segment Middle Closure Formwork Fabrication	161,9	m2	1	12.830.614
76	Installation of Segment Middle Closure Reinforcement	8749	kg	2	15.692.251
77	Installation of Segment Middle Closure Formwork	161,9	m2	1	5.837.184
78	Segment Middle Closure Casting	51,92	m3	1	106.152.406
79	Segment Middle Closure Curing	161,9	m2	1	1.868.428
80	Segment Middle Closure Stressing	326,04	strand	1	20.741.202
81	Demolishing Segment Middle Closure Formwork	161,9	m2	1	4.991.547
82	Segment Closure P7 Reinforcement Fabrication	27395,87	m2	2	435.798.012
83	Segment Closure P7 Formwork Fabrication	506,95	kg	3	39.410.173
84	Installation of Segment Closure P7 Reinforcement	27395,87	m2	7	54.922.880
85	Installation of Segment Closure P7 Formwork	506,95	m3	2	11.674.368
86	Segment Closure P7 Casting	162,59	m2	1	242.960.946
87	Segment Closure P7 Curing	506,95	strand	1	2.543.006
88	Segment Closure P7 Stressing	942,4	m2	2	52.524.649
89	Demolishing Segment Closure P7 Formwork	506,95	m2	2	9.983.095
90	Segment Closure P10 Reinforcement Fabrication	28868,76	kg	2	457.963.914
91	Segment Closure P10 Formwork Fabrication	534,2	m2	3	40.587.518
92	Installation of Segment Closure P10 Reinforcement	28868,76	m3	7	54.922.880
93	Installation of Segment Closure P10 Formwork	534,2	m2	2	11.674.368
94	Segment Closure P10 Casting	171,33	strand	1	253.767.308
95	Segment Closure P10 Curing	534,2	m2	1	2.596.290
96	Segment Closure P10 Stressing	1075,82	strand	2	57.599.328
97	Demolishing Segment Closure P10 Formwork	534,2	m2	2	9.983.095
Total Cost	(Includes Tax)				51.917.648.940
Indirect Co	ost K3 (2,5%)				1.038.352.979
Total Cost					51.956.001.919

implementation cost of Rp. 51,956,001,919 including 15% tax and project overhead costs.

B. Suggestions

The suggestions that can be given by the author on this final project are as follows:

- 1. More detailed prices are still needed so that the result of the cost calculation are not very different from the actual costs.
- 2. The need for a target time to complete the construction project in order to determine the right working method and a sufficient number of workers so that the project can be completed on time.
- 3. The need for references to previous research in order to determine the implementation method to be used, so that the calculation of duration and costs can obtain optimal results.

REFERENCES

- [1] Ir Soedrajat S, Analisa Anggaran Biaya Pelaksanaan Cara Modern. Bandung: NOVA, 1984.
- [2] Kementerian Pekerjaan Umum dan Perumahan Rakyat, "Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat tentang Pedoman Analisis Harga Satuan Pekerjaan Bidang Pekerjaan Umum," 2016.