Modeling and Estimating GARCH-X and Realized GARCH Using ARWM and GRG Methods
DOI:
https://doi.org/10.12962/j24775401.ijcsam.v11i1.4309Keywords:
Adaptive, GARCH-X, GRG, Realized GARCH, Realized KernelAbstract
This study evaluates the fitting performance of GARCH-X(1,1) and RealGARCH(1,1) models, which are extensions of GARCH(1,1) model by adding the Realized Kernel measure as an exogenous component, on real data, namely the Financial Times Stock Exchange 100 and Hang Seng stock indices over the period from January 2000 to December 2017. The models assume that the return error follows Normal and Student- t distributions. The parameters of models are estimated by using the Adaptive Random Walk Metropolis (ARWM) method implemented in Matlab and the Generalized Reduced Gradient (GRG) method. The comparison of estimation results shows that the GRG method has a good ability to estimate the models because it provides the estimation results that are close to the results of the ARWM method in terms of relative error. On the basis of Akaike Information Criterion, the RealGARCH models perform better than the GARCH-X models, where the RealGARCH model with Student- t distribution provides the best fit.
References
[1] Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto, B.
and Sasongko, L. R., Empirical performance of GARCH, GARCH-M,
GJR-GARCH and log-GARCH models for returns volatility, J. Phys.
Conf. Ser., vol. 1307, no. 1, p. 012003, 2019.
[2] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity,
J. Econom., vol. 31, no. 3, pp. 307–327, 1986.
[3] Andersen, T. G. and Bollerslev, T., Answering the skeptics: Yes, standard
volatility models do provide accurate forecasts, Int. Econ. Rev., vol. 39,
no. 4, pp. 885–905, 1998.
[4] Hansen, P. R., Huang, Z. and Shek, H. H., Realized GARCH: A joint
model of returns and realized measures of volatility, J. Appl. Econom.,
vol. 26, no. 6, pp. 877–906, 2011.
[5] Engle, R., New frontiers for ARCH models, J. Appl. Econom., vol. 17,
no. 5, pp. 425–446, 2002.
[6] Nugroho D. B., Wicaksono, B. A., Larwuy, L., GARCH-X(1,1) model
allowing a non-linear function of the variance to follow an AR(1)
process, Commun. Stat. Appl. Methods, vol. 30, no. 2, pp. 163–178,
2023.
[7] Nugroho D. B., Wijaya, J., Setiawan, A., Modeling of returns volatility
through EGARCH model using high-frequency data, J. Appl. Prob. Stat.,
vol. 18, no. 2, pp. 055–073, 2023.
[8] Nugroho, D. B., Wibowo, H. and Saragih, A., Modeling daily return
volatility through GJR(1,1) model and realized volatility measure, Thail.
Stat., vol. 22, no. 1, pp. 50–62, 2024.
[9] Barndorff-Nielsen, O. E, Hansen, P., Lunde, A. and Shephard, N.,
Designing realised kernels to measure the ex-post variation of equity
prices in the presence of noise, Econometrica, vol. 76, no. 6, pp. 1481–
1536, 2008.
[10] Dutta, A., Modelling volatility: Symmetric or asymmetric GARCH
models, J. Stat. Adv. Theory Appl., vol. 12, no. 2, pp. 99–108, 2014.
[11] Gerlach, W. and Wang, C., Forecasting risk via realized GARCH,
incorporating the realized range, Quant. Financ., vol. 16, no. 4, pp. 501–
511, 2016.
[12] Olbrys, J. and Majewska, E., Asymmetry effects in volatility on the
major European Stock Markets: the EGARCH based approach, Quant.
Financ. Econ., vol. 1, no. 4, pp. 411–427, 2017.
[13] Feng L. and Shi, Y., A simulation study on the distributions of disturbances
in the GARCH model, Cogent Econ. Financ., vol. 5, no. 1, p.
1355503, 2017.
[14] Abadie, J., Application of the GRG algorithm to optimal control
problems, p. 181 in , Integer and Nonlinear Programming, Abadie, J.,
ed., North Holland, Amsterdam, 1970.
[15] Lasdon, L. S., Fox, R. L. and M. W. Ratner, Nonlinear optimization using
the generalized reduced gradient method, Recherche Operationnelle,
vol. 8, no. 3, pp. 73–103, 1974.
[16] Nawaz, M. N., Ali, A. S., Jaffar, S. T. A., Jafri, T. H., Oh, T. -M.,
Abdallah, M., Karam, S. and Azab, M., Cost-based optimization of
isolated footing in cohesive soils using generalized reduced gradient
method, Build., vol. 12, p. 1646, 2022.
[17] Elci, Alper, Calibration of groundwater vulnerability mapping using the
generalized reduced gradient method, J. Contam. Hydrol., vol. 207, pp.
39–49, 2017.
[18] Sakhaei, Z., Azin, R. and Osfouri, S., Assessment of
empirical/theoretical relative permeability correlations for gasoil/
condensate systems, 1st Biennial Conference Persian Gulf
Oil, Gas and Petrochemistry, Iran, 2016. Retrieved from
https://www.researchgate.net/publication/304019498.
[19] Mantell, J. B. and Lasdon, L. S., A GRG algorithm for econometric control
problems, p. 581–597 in , Annals of Economic and Social Measurement,
vol. 6, no. 5, National Bureau of Economic Research, Inc, 1977.
Retrieved from https://EconPapers.repec.org/RePEc:nbr:nberch:10545.
[20] Nugroho, D. B., Susanto, B., Prasetia, K. N. P. and Rorimpandey, R.,
Modeling of returns volatility using GARCH(1,1) model under Tukey
transformations, J. Akuntansi Keuangan, vol. 21, no. 1, pp. 12–20, 2019.
[21] Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto,
B. and Sasongko, L. R., GRG non-linear and ARWM methods for
estimating the GARCH-M, GJR, and log-GARCH Models, J. Teori
Aplikasi Matematika, vol. 6, no. 2, pp. 448–460, 2022.
[22] Nugroho, D. B., Mahatma, T. and Pratomo, Y., GARCH models under
power transformed returns: Empirical evidence from international stock
indices, Austrian J. Stat., vol. 50, no. 4, 1–18, 2021.
[23] Le, H., Pham, U., Nguyen, P. and Pham, T. B., Improvement on Monte
Carlo estimation of HPD intervals, Commun. Stat. Simul. Comput., vol.
49, no. 8, pp. 2164–2180, 2020.
[24] Kubara, M. and Kopczewska, K., Akaike information criterion in choosing
the optimal k-nearest neighbours of the spatial weight matrix, Spat.
Econ. Anal., vol. 19, no. 1, pp. 73–91, 2023.
[25] Hansen, P. H. and Lunde A., A forecast comparison of volatility models:
does anything beat a GARCH(1,1)? J. Appl. Econom., vol. 20, no. 7,
pp. 873–889, 2005.
[26] Jafari, G. R., Bahraminasab, A. and Norouzzadeh P., Why does the
standard GARCH(1,1) model work well? Int. J. Modern Phys. C, vol.
18, no. 07, pp. 1223–1230, 2007.
[27] Kim, N., A Jarque-Bera type test for multivariate normality based on
second-power skewness and kurtosis, Commun. Stat. Appl. Methods,
vol. 28, no. 5, pp. 463–475, 2021.
[28] Ardia, D. and Hoogerheide, L. F., Bayesian estimation of the
GARCH(1,1) model with Student-t innovations, R J., vol. 2, no. 2, pp.
41–47, 2010.
[29] Deschamps, P. J., A flexible prior distribution for Markov switching
autoregressions with Student-t errors, J. Econom., vol. 133, no. 1, pp.
153–190, 2006.



