Local Stability Analysis of Mathematic Model SEIHR-VW on Dengue Haemorrhagic Fever Transmission
DOI:
https://doi.org/10.12962/j24775401.ijcsam.v11i2.6054Keywords:
Local Stability Analysis, Dengue Transmission, Mathematical ModelingAbstract
Dengue fever is caused by the dengue virus (DENV) and is mainly transmitted by mosquitoes, particularly Aedes aegypti. In this study, we develop a mathematical model to describe and analyze how dengue spreads within a population. The mathematical model is expressed as a nonlinear system of differential equations and consists of seven compartments (SEIHRVW): susceptible, exposed, infected, hospitalized, and recovered humans, along with susceptible and infected mosquitoes. The model has two possible equilibrium points: a non-endemic and endemic equilibrium point. To better understand the dynamics of the model, we calculate the basic reproduction number (R0) using the Next Generation Matrix (NGM) method, and then the Routh-Hurwitz criterion method is applied to analyze the local stability of both equilibrium points. The results indicate that the nonendemic equilibrium point is asymptotically stable when R0 < 1, while the endemic equilibrium point becomes asymptotically stable when R0 > 1. In general, our analysis concludes that the proposed dengue transmission model is asymptotically stable at the endemic equilibrium point, with R0 = 3.85011.
References
[1] R. R. de Almeida, B. Paim, S. A. de Oliveira, A. S. Souza Jr., A. C. P. Gomes, D. L. Escuissato, G. Zanetti, and E. Marchiori, “Dengue Hemorrhagic Fever: A State-of-the-Art Review Focused in Pulmonary Involvement,” Lung, vol. 195, no. 4, pp. 389–395, 2017, doi: 10.1007/s00408-017-0021-6.
[2] Q. Pangestu and Hartono, “Analisis Kestabilan Titik Equilibrium dari Model Matematika Penyebaran Penyakit DBD di DIY,” J. Kajian Dan Terapan Mat., vol. 9, no. 2, pp. 86–96, 2023.
[3] World Health Organization, “Dengue and Severe Dengue,” 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
[4] Kementerian Kesehatan RI, “Waspada Penyakit di Musim Hujan,” 2024. [Online]. Available: https://kemkes.go.id/id/waspada-penyakit-di-musim-hujan
[5] U. M. Gul, A. Paul, K. W. A. Chee, and R. Samikannu, “Mathematical Modeling of Real-Time Systems Using Heun and Piecewise Methods,” Mathematical Problems in Engineering, Hindawi, vol. 2022, pp. 1-6, 2022, doi: 10.1155/2022/4651084.
[6] Z. Kohen and D. Orenstein, “Mathematical Modeling of Tech-Related Real-World Problems for Secondary School-Level Mathematics,” Educational Studies in Mathematics, vol. 107, pp. 71–91, 2021, doi: 10.1007/s10649-020-10020-1.
[7] Widowati and Sutimin, Pemodelan Matematika Analisis dan Aplikasinya, Semarang: Undip Press, 2013.
[8] G. Zaman, I. H. Jung, D. F. M. Torres, and A. Zeb, “Mathematical Modeling and Control of Infectious Diseases,” Computational and Mathematical Methods in Medicine, vol. 2017, 2017, doi: 10.1155/2017/7149154.
[9] B. F. Etin-Osa and E. Jeremiah, “Modelling and Solution of Infectious Diseases Using the Extended Laplace Adomian Decomposition Techniques,” Applied and Computational Mathematics, vol. 10, no. 2, p. 30-39, 2021, doi: 10.11648/j.acm.20211002.11.
[10] S. Windawati, A. Shodiqin, and A. N. Aini, “Analisis Kestabilan Model Matematika Penyebaran Penyakit Demam Berdarah dengan Pengaruh Fogging,” Square: Journal of Mathematics and Mathematics Education, vol. 2, no. 1, p. 1-16, 2020, doi: 10.21580/square.2020.2.1.5149.
[11] S. C. Chen and M. H. Hsieh, “Modeling The Transmission Dynamics of Dengue Fever: Implications of Temperature Effects,” Science of The Total Environment, vol. 431, pp. 385–391, 2012, doi: 10.1016/j.scitotenv.2012.05.012.
[12] M. Z. Ndii, A. R. Mage, J. J. Messakh, and B. S. Djahi, “Optimal Vaccination Strategy for Dengue Transmission in Kupang City, Indonesia,” Heliyon, vol. 6, no. 11, p. e05345, 2020, doi: 10.1016/j.heliyon.2020.e05345.
[13] J. W. Puspita, Farida, M. Fakhruddin, N. Nuraini, R. Fauzi, S. W. Indratno, and E. Soewono, “Modeling and Descriptive Analysis of Dengue Cases in Palu City, Indonesia,” Physica A: Statistical Mechanics and its Applications, vol. 625, p. 129019, 2023, doi: 10.1016/j.physa.2023.129019.
[14] N. Nuraini, I. S. Fauzi, M. Fakhruddin, A. Sopaheluwakan, E. Soewono,, “Climate-Based Dengue Model in Semarang, Indonesia: Predictions and Descriptive Analysis,” Infectious Disease Modelling, vol. 6, pp. 598–611, 2021, doi: 10.1016/j.idm.2021.03.005.
[15] K. Liu, X. Hou, Z. Ren, R. Lowe, Y. Wang, R. Li, X. Liu, J. Sun, L. Lu, X. Song, H. Wu, J. Wang, W. Yao, C. Zhang, S. Sang, Y. Gao, J. Li, J. Li, L. Xu, Q. Liu, “Climate Factors and The East Asian Summer Monsoon May Drive Large Outbreaks of Dengue in China,” Environmental Research, vol. 183, 2020, doi: 10.1016/j.envres.2020.109190.
[16] J. K. K. Asamoah, E. Yankson, E. Okyere, G. Q. Sun, Z. Jin, R. Jan, Fatmawati, “Optimal Control and Cost-Effectiveness Analysis for Dengue Fever Model with Asymptomatic and Partial Immune Individuals,” Results in Physics, vol. 31, p. 104919, 2021, doi: 10.1016/j.rinp.2021.104919.
[17] M. A. Khan and Fatmawati, “Dengue Infection Modeling and it Optimal Control Analysis in East Java, Indonesia,” Heliyon, vol. 7, no. 1, p. e06023, 2021, doi: 10.1016/j.heliyon.2021.e06023.
[18] I. Ghosh, P. K. Tiwari, and J. Chattopadhyay, “Effect of Active Case Finding on Dengue Control: Implications from A Mathematical Model,” Journal of Theoretical Biology, vol. 464, pp. 50–62, 2019, doi: 10.1016/j.jtbi.2018.12.027.
[19] F. B. Agusto and M. A. Khan, “Optimal Control Strategies for Dengue Transmission in Pakistan,” Mathematical Biosciences, vol. 305, pp. 102–121, 2018, doi: 10.1016/j.mbs.2018.09.007.
[20] A. Abidemi and N. A. B. Aziz, “Analysis of Deterministic Models for Dengue Disease Transmission Dynamics with Vaccination Perspective in Johor, Malaysia,” International Journal of Applied and Computational Mathematics, vol. 8, 2022, doi: 10.1007/s40819-022-01250-3.
[21] D. Aldila, M. Z. Ndii, N. Anggriani, Windarto, H. Tasman, B. D. Handari, “Impact of Social Awareness, Case Detection, and Hospital Capacity on Dengue Eradication in Jakarta: A Mathematical Model Approach,” Alexandria Engineering Journal, vol. 64, pp. 691–707, 2023, doi: 10.1016/j.aej.2022.11.032.
[22] R. C. A. Ariyani, Widowati, Kartono, R. H. Tjahjana and R. H., S. Utomo, “Analysis of Local Stability of the Model on COVID-19 Spread in DKI Jakarta Province,” E3S Web of Conferences, vol. 448, 2023, doi: 10.1051/e3sconf/202344805006.
[23] Widowati, Sutrisno, P. S. Sasongko, M. Brillian, E. Triyana, “Mathematical Modeling and Stability Analysis of the COVID-19 Spread by Considering Quarantine and Hospitalize,” Mathematical Modelling Engineering Problems, vol. 9, no. 6, pp. 1545–1556, 2022, doi: 10.18280/MMEP.090614.
[24] Kartono, Widowati, S. M. Rahmasari, R. H. S. Utomo, E. Triyana, “Dynamical Modeling and Optimal Control Strategies to Reduce the Spread of Covid-19,” Communications in Mathematical Biology and Neuroscience,, vol. 2024, pp. 1–31, 2024, doi: 10.28919/cmbn/8465.



