Analysis of GDP in Countries allied to Indonesia using a Combination of the GSTAR Model and Verification using Statistical Quality Control

Penulis

  • Nur'ainul Miftahul Huda Department of Mathematics, FMIPA, Universitas Tanjungpura
  • Nurfitri Imro'ah Department of Statistics, FMIPA, Universitas Tanjungpura
  • Tarisa Umairah Department of Statistics, FMIPA, Universitas Tanjungpura
  • Dewi Setyo Utami Department of Statistics, FMIPA, Universitas Tanjungpura
  • Nani Fitria Arini Department of Mathematics, FMIPA, Universitas Tanjungpura

DOI:

https://doi.org/10.12962/ijcsam.v11i1.4307

Kata Kunci:

Terms—spatial,, connected,, in-control

Abstrak

The Generalized Space-Time Autoregressive (GSTAR) model is used to model GDP growth rates in Indonesia, Malaysia, Singapore, and Brunei Darussalam, allied countries. Southeast Asian countries have cultural and historical linkages and often share economic tendencies. GSTAR is used because it can represent GDP dynamics' complex spatial and temporal relationships. Historical GDP data for the four countries from 1975 to the present is collected. The GSTAR model models regional interdependence and temporal patterns in these economies' geographical and temporal linkages. To test GSTAR model accuracy and robustness, control chart analysis is done. Control charts help monitor and assess economic model stability. The data used in this study is GDP data in Indonesia, Malaysia, Singapore, Brunei Darussalam, and Thailand, was collected from 1975 to 2021. This study discusses GSTAR model projections with actual GDP growth rate data to identify economic abnormalities in these linked countries. This research has major consequences for regional politicians, economists, and businesses. Policy decisions, investment strategies, and GSTAR model economic forecasts can benefit from understanding these countries' GDP growth interdependencies and patterns. Control chart analysis also assures the model accurately tracks economic trends over time. Finally, the GSTAR model and control chart analysis give a complete framework for modeling and testing allied GDP growth rates.

Referensi

[1] R. Jayathilaka et al., “Gross domestic product and logistics performance

index drive the world trade: A study based on all continents,”

PLoS One, vol. 17, no. 3, p. e0264474, Mar. 2022, doi: 10.1371/journal.

pone.0264474.

[2] Z. Yang, X. Zhang, J. Lei, Z. Duan, and J. Li, “Spatio-temporal Pattern

Characteristics of Relationship Between Urbanization and Economic

Development at County Level in China,” Chin Geogr Sci, vol. 29, no.

4, pp. 553–567, Aug. 2019, doi: 10.1007/s11769-019-1053-z.

[3] S. Zhao, D. Peng, H. Wen, and Y. Wu, “Nonlinear and spatial spillover

effects of the digital economy on green total factor energy efficiency:

evidence from 281 cities in China,” Environmental Science and Pollution

Research, vol. 30, no. 34, pp. 81896–81916, Aug. 2022, doi:

10.1007/s11356-022-22694-6.

[4] A. Phayal, A. Gold, and B. Prins, “Interstate hostility and maritime

crime: Evidence from South East Asia,” Mar Policy, vol. 143, p. 105134,

Sep. 2022, doi: 10.1016/j.marpol.2022.105134.

[5] S. Bi, “Cooperation between China and ASEAN under the building

of ASEAN Economic Community,” Journal of Contemporary

East Asia Studies, vol. 10, no. 1, pp. 83–107, Jan. 2021, doi:

10.1080/24761028.2021.1888410.

[6] W. Bai, L. Zhang, S. Lu, J. Ren, and Z. Zhou, “Sustainable energy

transition in Southeast Asia: Energy status analysis, comprehensive

evaluation and influential factor identification,” Energy, vol. 284, p.

128670, Dec. 2023, doi: 10.1016/j.energy.2023.128670.

[7] G. Ferrero, M. Pisani, and M. Tasso, “Policy Mix During a Pandemic

Crisis: A Review of the Debate on Monetary and Fiscal Responses and

the Legacy for the Future,” 2022, pp. 267–320. doi: 10.1007/978-3-031-

10302-5-11.

[8] A. Mohamad, I. M. Sifat, H. Mohd Thas Thaker, and A. M. Noor,

“On IMF debt and capital control: evidence from Malaysia, Thailand,

Indonesia, the Philippines and South Korea,” Journal of Financial

Regulation and Compliance, vol. 29, no. 2, pp. 143–162, May 2021,

doi: 10.1108/JFRC-08-2019-0108.

[9] H. Sun, B. K. Edziah, C. Sun, and A. K. Kporsu, “Institutional quality

and its spatial spillover effects on energy efficiency,” Socioecon Plann

Sci, vol. 83, p. 101023, Oct. 2022, doi: 10.1016/j.seps.2021.101023.

[10] Kriskkumar and Naseem, “Analysis of Oil Price Effect on Economic

Growth of ASEAN Net Oil Exporters,” Energies (Basel), vol. 12, no.

17, p. 3343, Aug. 2019, doi: 10.3390/en12173343.

[11] M. Murshed, R. Ahmed, C. Kumpamool, M. Bassim, and M. Elheddad,

“The effects of regional trade integration and renewable energy transition

on environmental quality: Evidence from South Asian neighbors,” Bus

Strategy Environ, vol. 30, no. 8, pp. 4154–4170, Dec. 2021, doi:

10.1002/bse.2862.

[12] S. Borovkova, H. P. Lopuha¨a, and B. N. Ruchjana, “Consistency and

Asymptotic Normality of Least Squares Estimators in Generalized STAR

Models,” Stat Neerl, vol. 62, no. 4, pp. 482–508, Nov. 2008, doi:

10.1111/j.1467-9574.2008.00391.x.

[13] N. M. Huda and N. Imro’ah, “Determination of the best weight matrix

for the Generalized Space Time Autoregressive (GSTAR) model in the

Covid-19 case on Java Island, Indonesia,” Spatial Statistics, vol. 54, p.

100734, Apr. 2023, doi: 10.1016/j.spasta.2023.100734.

[14] N. M. Huda, U. Mukhaiyar, and N. Imro’ah, “AN ITERATIVE PROCEDURE

FOR OUTLIER DETECTION IN GSTAR(1;1) MODEL,”

BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 16, no. 3, pp.

975–984, Sep. 2022, doi: 10.30598/barekengvol16iss3pp975-984.

[15] N. M. Huda, U. Mukhaiyar, and U. S. Pasaribu, “The Approximation

of GSTAR Model for Discrete Cases through INAR Model,” J Phys

Conf Ser, vol. 1722, no. 1, p. 012100, Jan. 2021, doi: 10.1088/1742-

6596/1722/1/012100.

[16] U. S. Pasaribu, U. Mukhaiyar, N. M. Huda, K. N. Sari, and S. W.

Indratno, “Modelling COVID-19 Growth Cases of Provinces in Java

Island by Modified Spatial Weight Matrix GSTAR through Railroad

Passenger’s Mobility,” Heliyon, vol. 7, no. 2, p. e06025, Feb. 2021, doi:

10.1016/j.heliyon.2021.e06025.

[17] U. Mukhaiyar, N. M. Huda, K. N. Sari, and U. S. Pasaribu, “Analysis

of Generalized Space Time Autoregressive with Exogenous Variable

(GSTARX) Model with Outlier Factor,” J Phys Conf Ser, vol. 1496,

no. 1, p. 012004, Mar. 2020, doi: 10.1088/1742-6596/1496/1/012004.

[18] U. Mukhaiyar, N. M. Huda, R. K. Novita Sari, and U. S. Pasaribu,

“Modeling Dengue Fever Cases by Using GSTAR(1;1) Model with

Outlier Factor,” J Phys Conf Ser, vol. 1366, no. 1, p. 012122, Nov.

2019, doi: 10.1088/1742-6596/1366/1/012122.

[19] Y. Yundari, N. M. Huda, U. S. Pasaribu, U. Mukhaiyar, and K. N. Sari,

“Stationary Process in GSTAR(1;1) through Kernel Function Approach,”

J Phys Conf Ser, p. 020010. doi: 10.1063/5.0016808.

[20] N. Imro’ah and N. M. Huda, “CONTROL CHART AS VERIFICATION

TOOLS IN TIME SERIES MODEL,” BAREKENG: Jurnal Ilmu

Matematika dan Terapan, vol. 16, no. 3, pp. 995–1002, Sep. 2022, doi:

10.30598/barekengvol16iss3pp995-1002.

[21] M. E. Kruk et al., “High-quality health systems in the Sustainable

Development Goals era: time for a revolution,” Lancet Glob Health,

vol. 6, no. 11, pp. e1196–e1252, Nov. 2018, doi: 10.1016/S2214-

109X(18)30386-3.

[22] N. Oktaviana and N. Amalia, “GROSS REGIONAL DOMESTIC

PRODUCT FORECASTS USING TREND ANALYSIS: CASE STUDY

OF BANGKA BELITUNG PROVINCE,” Jurnal Ekonomi & Studi

Pembangunan, vol. 19, no. 2, 2018, doi: 10.18196/jesp.19.2.5005.

[23] J. V. Henderson, A. Storeygard, and D. N. Weil, “Measuring Economic

Growth from Outer Space,” American Economic Review, vol. 102, no.

2, pp. 994–1028, Apr. 2012, doi: 10.1257/aer.102.2.994.

[24] Z. Zhao et al., “Analysis of the Spatial and Temporal Evolution of the

GDP in Henan Province Based on Nighttime Light Data,” Remote Sens

(Basel), vol. 15, no. 3, p. 716, Jan. 2023, doi: 10.3390/rs15030716.

[25] U. Mukhaiyar and U. S. Pasaribu, “A New Procedure of Generalized

STAR Modeling using IAcM Approach,” ITB Journal of Sciences, vol.

44, no. 2, pp. 179–192, 2012, doi: 10.5614/itbj.sci.2012.44.2.7.

[26] S. Borovkova, H. Lopuhaa, and B. Nurani, “Generalized STAR model

with experimental weights,” in 17th International Workshop on Statistical

Modelling, 2002, pp. 139–147.

[27] Yundari, U. S. Pasaribu, U. Mukhaiyar, and M. N. Heriawan, “Spatial

Weight Determination of GSTAR(1;1) Model by Using Kernel

Function,” J Phys Conf Ser, vol. 1028, p. 012223, Jun. 2018, doi:

10.1088/1742-6596/1028/1/012223.

[28] U. Mukhaiyar, B. I. Bilad, and U. S. Pasaribu, “The Generalized STAR

Modelling with Minimum Spanning Tree Approach of Weight Matrix

for COVID-19 Case in Java Island,” J Phys Conf Ser, vol. 2084, no. 1,

p. 012003, Nov. 2021, doi: 10.1088/1742-6596/2084/1/012003.

[29] B. N. Ruchjana, S. A. Borovkova, and H. P. Lopuhaa, “Least Squares

Estimation of Generalized Space Time AutoRegressive (GSTAR) Model

and Its Properties,” J Phys Conf Ser, pp. 61–64. doi: 10.1063/1.4724118.

[30] A. Faraz, W. H. Woodall, and C. Heuchenne, “Guaranteed conditional

performance of the S 2 control chart with estimated parameters,”

Int J Prod Res, vol. 53, no. 14, pp. 4405–4413, Jul. 2015, doi:

10.1080/00207543.2015.1008112.

[31] D. C. Montgomery and C. M. Borror, “Systems for modern quality and

business improvement,” Qual Technol Quant Manag, vol. 14, no. 4, pp.

343–352, Oct. 2017, doi: 10.1080/16843703.2017.1304032.

[32] M. Singh and R. Rathi, “A structured review of Lean Six Sigma in

various industrial sectors,” International Journal of Lean Six Sigma, vol.

10, no. 2, pp. 622–664, May 2019, doi: 10.1108/IJLSS-03-2018-0018.

[33] A. Almaya et al., “Control Strategies for Drug Product Continuous

Direct Compression—State of Control, Product Collection Strategies,

and Startup/Shutdown Operations for the Production of Clinical Trial

Materials and Commercial Products,” J Pharm Sci, vol. 106, no. 4, pp.

930–943, Apr. 2017, doi: 10.1016/j.xphs.2016.12.014.

[34] R. Sanchez-Marquez, J. M. Albarracin Guillem, E. Vicens-Salort, and J.

Jabaloyes Vivas, “A statistical system management method to tackle

data uncertainty when using key performance indicators of the balanced

scorecard,” J Manuf Syst, vol. 48, pp. 166–179, Jul. 2018, doi:

10.1016/j.jmsy.2018.07.010.

[35] K. Mukundam, D. R. N. Varma, G. R. Deshpande, V. Dahanukar, and

A. K. Roy, “I-MR Control Chart: A Tool for Judging the Health of

the Current Manufacturing Process of an API and for Setting the Trial

Control Limits in Phase I of the Process Improvement,” Org Process Res

Dev, vol. 17, no. 8, pp. 1002–1009, Aug. 2013, doi: 10.1021/op4001093.

[36] N. Mirzaei, S. Niroomand, and R. Zare, “Application of statistical process

control in service industry,” Journal of Modelling in Management,

vol. 11, no. 3, pp. 763–782, Aug. 2016, doi: 10.1108/JM2-06-2014-0046.

[37] H. Jeyabalan, L. M. Hee, and M. S. Leong, “Condition Monitoring of Industrial

Gas Turbine Critical Operating Parameters Using Statistical Process

Control Charts,” Applied Mechanics and Materials, vol. 773–774,

pp. 204–209, Jul. 2015, doi: 10.4028/www.scientific.net/AMM.773-

774.204.

[38] I. Bostan, C. Toma, G. Aevoae, I.-B. Robu, D. N. Mardiros, and

S,

tefan C. Topliceanu, “Effects of Internal and External Factors on

Economic Growth in Emerging Economies: Evidence from CEE Countries,”

East Europ Econ, vol. 61, no. 1, pp. 66–85, Jan. 2023, doi:

10.1080/00128775.2022.2109489.

Diterbitkan

2025-12-02

Cara Mengutip

Huda, N. M., Imro'ah, N., Umairah, T., Utami, D. S., & Arini, N. F. (2025). Analysis of GDP in Countries allied to Indonesia using a Combination of the GSTAR Model and Verification using Statistical Quality Control. (IJCSAM) International Journal of Computing Science and Applied Mathematics, 11(1), 21–28. https://doi.org/10.12962/ijcsam.v11i1.4307

Terbitan

Bagian

Articles