Climate Change and Its Effect on Temperature and Precipitation Trends: Case Study in Surabaya Using RegCM5
DOI:
https://doi.org/10.12962/j24775401.ijcsam.v11i1.4308Kata Kunci:
Climate change, Precipitation, RegCM, Regional climate model, TemperatureAbstrak
Climate change is increasingly driving extreme weather events, yet its regional impacts remain complex. This study employs the RegCM5 model, driven by ERA5 reanalysis data, to simulate high-resolution (5 km) climate dynamics in Surabaya, Indonesia from December 2018 to November 2023. Validated against gridded observational datasets and analyzed via Earth's energy balance, the results reveal a steady rise in both top-of-atmosphere and surface energy imbalances, corresponding with record-breaking increases in maximum and minimum temperatures by approximately 1.5°C and 1°C from 2020 to 2023. While monthly precipitation patterns were inconsistent, daily observations indicate a significant increase in high-intensity precipitation events. These findings offer critical insights into evolving regional climate impacts and inform local adaptation and mitigation strategies.
Referensi
[1] M. Fofana, J. Adounkpe, I. Larbi, J. Hounkpe, H. D. Koubodana,
A. Toure, H. Bokar, S. Q. Dotse, and A. M. Limantol, “Urban flash
flood and extreme rainfall events trend analysis in bamako, mali,”
Environmental Challenges, vol. 6, p. 100449, 1 2022.
[2] A. Ahmed, T. Al-Said, R. Madhusoodhanan, S. W. A. Naqvi, A. Sarkar,
L. Fernandes, F. Thuslim, W. Al-Zakri, and F. Al-Yamani, “Environmental
impact of a series of flash flood events on a hypersaline subtropical
system in the northwestern arabian gulf,” Marine Pollution Bulletin,
vol. 175, p. 113394, 2 2022.
[3] T. V. Ha, J. Huth, F. Bachofer, and C. Kuenzer, “A review of earth
observation-based drought studies in southeast asia,” Remote Sensing,
vol. 14, p. 3763, 8 2022.
[4] E. Commission, J. R. Centre, A. Toreti, D. Bavera, J. A. Navarro,
A. Jager, C. D. Ciollo, W. Maetens, D. Magni, D. Masante,
M. Mazzeschi, J. Spinoni, S. Niemeyer, C. Cammalleri, and A. H.
Essenfelder, Drought in Europe – August 2022 – GDO analytical report.
Publications Office of the European Union, 2022.
[5] K. P. Tripathy, S. Mukherjee, A. K. Mishra, M. E. Mann, and A. P.
Williams, “Climate change will accelerate the high-end risk of compound
drought and heatwave events,” Proceedings of the National
Academy of Sciences, vol. 120, 7 2023.
[6] A. Ingham, J. Ma, and A. Ulph, “Climate change, mitigation and adaptation
with uncertainty and learning,” Energy Policy, vol. 35, pp. 5354–
5369, 11 2007.
[7] R. Yousefpour and M. Hanewinkel, “Climate change and decisionmaking
under uncertainty,” Current Forestry Reports, vol. 2, pp. 143–
149, 6 2016.
[8] J. C. Refsgaard, K. Arnbjerg-Nielsen, M. Drews, K. Halsnæs, E. Jeppesen,
H. Madsen, A. Markandya, J. E. Olesen, J. R. Porter, and J. H.
Christensen, “The role of uncertainty in climate change adaptation strategies—
a danish water management example,” Mitigation and Adaptation
Strategies for Global Change, vol. 18, pp. 337–359, 3 2013.
[9] M. H. Dore, “Climate change and changes in global precipitation
patterns: What do we know?,” Environment International, vol. 31,
pp. 1167–1181, 10 2005.
[10] Z. Li, Q. Li, and T. Chen, “Record-breaking high-temperature outlook
for 2023: An assessment based on the china global merged temperature
(cmst) dataset,” Advances in Atmospheric Sciences, vol. 41, pp. 369–
376, 2 2024.
[11] M. Rantanen and A. Laaksonen, “The jump in global temperatures in
september 2023 is extremely unlikely due to internal climate variability
alone,” npj Climate and Atmospheric Science, vol. 7, 12 2024.
[12] A. B. Santoso, A. Prasetiyo, R. Alfian, Y. Y. Alfana, and Z. F. Zhafiri,
“Kota surabaya dalam angka 2023,” 2023.
[13] L. K. Katherina, “Dinamika pertumbuhan penduduk dan kejadian banjir
di kota: Kasus surabaya,” Jurnal Kependudukan Indonesia, vol. 12,
pp. 131–144, 12 2017.
[14] M. P. Prawira and A. Pamungkas, “Mitigasi kawasan rawan banjir rob
di kawasan pantai utara surabaya,” Jurnal Teknik POMITS, vol. 3, 2014.
[15] R. Burhani, “Luapan kali surabaya genangi sejumlah wilayah,” Antara
News, 3 2011.
[16] F. A. Maslakah, “Tren temperatur dan hujan ekstrim di juanda surabaya
tahun 1981-2013,” Jurnal Meteorologi dan Geofisika, vol. 16, 2015.
[17] S. H. Schneider and R. E. Dickinson, “Climate modeling,” Reviews of
Geophysics, vol. 12, pp. 447–493, 8 1974.
[18] G. A. Meehl and W. M. Washington, “A comparison of soil-moisture
sensitivity in two global climate models,” Journal of the Atmospheric
Sciences, vol. 45, pp. 1476–1492, 5 1988.
[19] F. Giorgi, “Simulation of regional climate using a limited area model
nested in a general circulation model,” Journal of Climate, vol. 3,
pp. 941–963, 9 1990.
[20] F. Giorgi, E. Coppola, G. Giuliani, J. M. Ciarlo‘, E. Pichelli,
R. Nogherotto, F. Raffaele, P. Malguzzi, S. Davolio, P. Stocchi, and
O. Drofa, “The fifth generation regional climate modeling system,
regcm5: Description and illustrative examples at parameterized convection
and convection-permitting resolutions,” Journal of Geophysical
Research: Atmospheres, vol. 128, 3 2023.
[21] F. Giorgi and E. Coppola, “Does the model regional bias affect the projected
regional climate change? an analysis of global model projections,”
Climatic Change, vol. 100, pp. 787–795, 6 2010.
[22] U. Handoko, A. Faqih, R. Boer, W. S. H. C. A. Pusat, P. Limnologi-
Lipi, and D. Redaksi, “Evaluasi model iklim regional regcm3 untuk
rekonstruksi data iklim historis,” 2014.
[23] T. Phan-Van, L. N. Quan, H. Thi, M. Ha, and V. Tan, “On the regional
climate simulation over southeast asia using regcm,” 2006.
[24] F. Silu´e, A. Diawara, B. Kon´e, A. Diedhiou, A. A. Kouassi, B. K.
Kouassi, F. Yoroba, A. Bamba, K. Kouadio, D. T. Ti´emoko, A. L. M.
Yapo, D. I. Kon´e, and A. M. L. Famien, “Assessment of the sensitivity of
the mean climate simulation over west africa to planetary boundary layer
parameterization using regcm5 regional climate model,” Atmosphere,
vol. 15, 3 2024.
[25] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Hor´anyi, J. Mu˜noz-
Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons,
C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati,
J. Bidlot, M. Bonavita, G. D. Chiara, P. Dahlgren, D. Dee,
M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes,
A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. H´olm, M. Janiskov´a,
S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay,
I. Rozum, F. Vamborg, S. Villaume, and J. Th´epaut, “The era5 global
reanalysis,” Quarterly Journal of the Royal Meteorological Society,
vol. 146, pp. 1999–2049, 7 2020.
[26] A. Gruber, T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo,
“Evolution of the esa cci soil moisture climate data records and their
underlying merging methodology,” Earth System Science Data, vol. 11,
pp. 717–739, 5 2019.
[27] Z. Wang, X. Gao, Z. Han, J. Wu, Y. Xu, and L. Juneng, “Assessing the
sensitivity of regcm4 to cumulus and ocean surface schemes over the
southeast asia domain of the coordinated regional climate downscaling
experiment,” Atmospheric and Oceanic Science Letters, vol. 13, pp. 71–
79, 1 2020.
[28] T. Ngo-Duc, T. Nguyen-Duy, Q. Desmet, L. Trinh-Tuan, L. Ramu,
F. Cruz, J. M. Dado, J. X. Chung, T. Phan-Van, H. Pham-Thanh,
K. Truong-Ba, F. T. Tangang, L. Juneng, J. Santisirisomboon, R. Srisawadwong,
D. Permana, U. A. Linarka, and D. Gunawan, “Performance
ranking of multiple cordex-sea sensitivity experiments: towards an
optimum choice of physical schemes for regcm over southeast asia,”
Climate Dynamics, 9 2024.
[29] S. Uwe, “Cdo user guide (2.3.0),” 10 2023.
[30] C. S. Zender, “Analysis of self-describing gridded geoscience data with
netcdf operators (nco),” Environmental Modelling Software, vol. 23,
pp. 1338–1342, 10 2008.
[31] G. Huffman, D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie,
and S. Yoo, “Nasa global precipitation measurement (gpm) integrated
multi-satellite retrievals for gpm (imerg),” Algorithm theoretical basis
document (ATBD), vol. 4, 2015.
[32] D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, “Nasa global
precipitation measurement (gpm) integrated multi-satellite retrievals for
gpm (imerg) prepared for: Global precipitation measurement (gpm)
national aeronautics and space administration (nasa),” 2014.
[33] J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch,
“Terraclimate, a high-resolution global dataset of monthly climate and
climatic water balance from 1958-2015,” Scientific Data, vol. 5, 1 2018.
[34] S. T. Ngai, F. Tangang, and L. Juneng, “Bias correction of global and
regional simulated daily precipitation and surface mean temperature over
southeast asia using quantile mapping method,” Global and Planetary
Change, vol. 149, pp. 79–90, 2 2017.
[35] X. Li, Q. Li, M. Wild, and P. Jones, “An intensification of surface earth’s
energy imbalance since the late 20th century,” Communications Earth
and Environment, vol. 5, 12 2024.
[36] J. Hiscott, M. Alexandridi, M. Muscolini, E. Tassone, E. Palermo,
M. Soultsioti, and A. Zevini, “The global impact of the coronavirus
pandemic,” Cytokine Growth Factor Reviews, vol. 53, pp. 1–9, 6 2020.
[37] D. Koh, “Covid-19 lockdowns throughout the world,” Occupational
Medicine, vol. 70, pp. 322–322, 7 2020.
[38] S. A. Bhat, O. Bashir, M. Bilal, A. Ishaq, M. U. D. Dar, R. Kumar, R. A.
Bhat, and F. Sher, “Impact of covid-related lockdowns on environmental
and climate change scenarios,” Environmental Research, vol. 195, 4
2021.
[39] R. L. Ray, V. P. Singh, S. K. Singh, B. S. Acharya, and Y. He, “What is
the impact of covid-19 pandemic on global carbon emissions?,” Science
of The Total Environment, vol. 816, p. 151503, 4 2022.
[40] J. Herby, L. Jonung, and S. H. Hanke, “Were covid-19 lockdowns worth
it? a meta-analysis,” Public Choice, 11 2024.
[41] Y. Liu, S. Ma, and R. Mu, “Pandemic experiences and the post-lockdown
economic recovery: Evidence from china,” China Economic Review,
vol. 84, p. 102125, 4 2024.
[42] A. Vorbrugg and J. Bluwstein, “Making sense of (the russian war
in) ukraine: On the politics of knowledge and expertise,” Political
Geography, vol. 98, p. 102700, 10 2022.
[43] S. Codish, A. Frenkel, M. Klein, A. Geftler, J. Dreiher, and D. Schwarzfuchs,
“October 7th 2023 attacks in israel: frontline experience of a
single tertiary center,” Intensive Care Medicine, vol. 50, pp. 308–310, 2
2024.
[44] G. Pach´e, “Israeli-palestinian conflict: towards a major logistical and
environmental crisis?,” Technium Soc. Sci. J., vol. 53, p. 252, 2024.
[45] M. Buheji and K. Al-Muhannadi, “Mitigating risks of environmental
impacts on gaza-review of precautions solutions post (2023 war),” International
Journal of Advanced Research in Engineering and Technology,
vol. 14, pp. 15–47, 2023.
[46] P. Pereira, F. Baˇsi´c, I. Bogunovic, and D. Barcelo, “Russian-ukrainian
war impacts the total environment,” Science of The Total Environment,
vol. 837, p. 155865, 9 2022.
[47] M. Solokha, P. Pereira, L. Symochko, N. Vynokurova, O. Demyanyuk,
K. Sementsova, M. Inacio, and D. Barcelo, “Russian-ukrainian war
impacts on the environment. evidence from the field on soil properties
and remote sensing,” Science of The Total Environment, vol. 902,
p. 166122, 12 2023.
[48] M. Jovanovic and M. Campbell, “Generative artificial intelligence:
Trends and prospects,” Computer, vol. 55, pp. 107–112, 10 2022.
[49] J. S. Devagiri, S. Paheding, Q. Niyaz, X. Yang, and S. Smith, “Augmented
reality and artificial intelligence in industry: Trends, tools,
and future challenges,” Expert Systems with Applications, vol. 207,
p. 118002, 11 2022.
[50] C.-C. Lee, J. Zou, and P.-F. Chen, “The impact of artificial intelligence
on the energy consumption of corporations: The role of human capital,”
Energy Economics, vol. 143, p. 108231, 3 2025.
[51] Q. Guo, Y. Peng, and K. Luo, “The impact of artificial intelligence on
energy environmental performance: Empirical evidence from cities in
china,” Energy Economics, vol. 141, p. 108136, 1 2025.
[52] A. Zhuk, “Artificial intelligence impact on the environment: Hidden ecological
costs and ethical-legal issues,” Journal of Digital Technologies
and Law, vol. 1, pp. 932–954, 12 2023.
[53] W. J. Ripple, C. Wolf, J. W. Gregg, J. Rockstr¨om, T. M. Newsome,
B. E. Law, L. Marques, T. M. Lenton, C. Xu, S. Huq, L. Simons, and
D. A. King, “The 2023 state of the climate report: Entering uncharted
territory,” BioScience, vol. 73, pp. 841–850, 12 2023.
[54] J. Andr´e, F. D’Andrea, P. Drobinski, and C. Muller, “Regimes of
precipitation change over europe and the mediterranean,” Journal of
Geophysical Research: Atmospheres, vol. 129, 8 2024.



