Terwilliger Algebras of Group Association Schemes of Matrix Groups
DOI:
https://doi.org/10.12962/j24775401.ijcsam.v11i1.4310Kata Kunci:
Terwilliger algebra, Association Scheme, Matrix GroupAbstrak
This paper investigates the Terwilliger algebras of
some group association schemes related to matrix groups. We obtain
the structure of the Terwilliger algebras for the general and
the special linear group of 2×2 matrices over the field of order
5. In particular, we determine the Wedderburn decomposition of
these algebras.
Referensi
[1] J. M. P. Balmaceda and M. Oura, The Terwilliger algebras of the group
association schemes of S5 and A5, Kyushu J. Math. 48 (1994), no. 2,
221-231.
[2] J. M. P. Balmaceda and A. C. L. Reyes, Terwilliger algebras of certain
group association schemes, Journal of the Math. Soc. Philippines. 44
(2021), no. 2, 19-28.
[3] E. Bannai and A. Munemasa, The Terwilliger algebras of group association
schemes, Kyushu J. Math. 49 (1995), no. 1, 93-102.
[4] N. L. Bastian, Terwilliger algebras for several finite groups, Thesis and
Dissertation, (2021), https://scholarsarchive.byu.edu/etd/8997 posted 22
March 2021.
[5] N. Hamid and M. Oura, Terwilliger Algebras of Some Group Association
Schemes, Math. J. Okayama Univ. 61 (2019), 199-204.
[6] A. Hanaki, Modular Terwilliger Algebras of Association
Schemes, Graphs and Combinatorics 37 (2021), 1521–1529,
https://doi.org/10.1007/s00373-021-02363-0
[7] R. Maleki, On the Terwilliger algebra of the group association
scheme of Cn ⋊ C2 Discrete Mathematics (2024), 113773,
https://doi.org/10.1016/j.disc.2023.113773.
[8] SageMath, the Sage Mathematics Software System (Version 9.0), The
Sage Developers, 2020, https://www.sagemath.org.
[9] P. Terwilliger, The subconstituent algebra of an association scheme I, J.
Algebraic Combin. 1 (1992), no. 4, 363–388, II. 2 (1993), no. 1, 73–103,
III. 2 (1993), no. 2, 177–210.
[10] J. Yang, X. Zhang, L. Feng, The Terwilliger algebras of the group
association schemes of three metacyclic groups, J. Comb. Des. 32, 8
(2024), https://doi.org/10.1002/jcd.21941. 1063-8539



