Spatial Temporal Analysis of Mesoscale Convective System to Asia-Australia Monsoon in East Java

Main Article Content

Prasetyo Firdianto
Bangun Muljo Sukojo
Achmad Zakir
Adi Mulsani

Abstract

Indonesia maritime continent has the formation of clouds that can develop and evolution into MCSs (Mesoscale Convective System). Asian-Australian monsoon has an important influence in determining activities of MCSs. Research gap is analysis of relation between monsoon and MCSs in East Java where is greatly influenced by the monsoon. The data are weather satellite of Himawari, zonal wind and meridional wind ERA-Interim Model 850 mb. Determination of the MCSs follows the physical characteristics in the Maddox algorithm and the AUSMI index follows the Kajikawa algorithm. The method used is quantitative analysis of coefficient of correlation and determination, and qualitative in the form of descriptive analytic. It can be known that the Asian-Australian monsoon has weak influence on the MCSs in the East Java. AUSMI index has the same pattern and phase with frequency of MCSs on seasonal. 

Article Details

How to Cite
[1]
P. Firdianto, B. M. Sukojo, A. Zakir, and A. Mulsani, “Spatial Temporal Analysis of Mesoscale Convective System to Asia-Australia Monsoon in East Java”, INDERAJA, vol. 19, no. 1, pp. 18–31, Jun. 2025.
Section
Articles

References

D. Argüeso, R. Romero, and V. Homar, “Precipitation features of the maritime continent in parameterized and explicit convection models,” J. Clim., vol. 33, no. 6, pp. 2449–2466, 2020, doi: 10.1175/JCLI-D-19-0416.1.

B. Tjasyono, Karakteristik dan Sirkulasi Atmosfer, vol. I. Jakarta: Badan Meteorologi Klimatologi dan Geofisika, 2009.

M. Muetzelfeldt, R. Plant, and H. Christensen, “Environmental Conditions Affecting Global Mesoscale Convective System Occurrence,” no. February, pp. 391–407, 2025, doi: 10.1175/JAS-D-24-0058.1.

W. R. Cotton and R. A. Anthes, “Chapter 10 Mesoscale Convective Systems,” Int. Geophys., vol. 44, no. C, pp. 593–713, Jan. 1992, doi: 10.1016/S0074-6142(08)60549-5.

A. Laing and J.-L. Evans, “Introduction to Tropical Meteorology,” COMET Progr., no. March, p. 2016, 2016, [Online]. Available: http://www.meted.ucar.edu/tropical/textbook_2nd_edition/

M. R. Igel and S. C. van den Heever, “Tropical, oceanic, deep convective cloud morphology as observed by CloudSat,” Atmos. Chem. Phys. Discuss., vol. 15, pp. 15977–16017, 2015, doi: 10.5194/acpd-15-15977-2015.

S. Samuel, N. Mathew, and V. Sathiyamoorthy, “Association of the occurrence of deep convective cloud cores with sea surface temperatures over the equatorial Indian and the western Pacific oceans,” Atmos. Res., vol. 269, p. 106034, May 2022, doi: 10.1016/J.ATMOSRES.2022.106034.

J. Strandgren, L. Bugliaro, F. Sehnke, and L. Schröder, “Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks,” Atmos. Meas. Tech., vol. 10, no. 9, pp. 3547–3573, 2017, doi: 10.5194/amt-10-3547-2017.

J. M. L. Dahl, “Supercells - Their Dynamics and Prediction,” p. 122, 2006.

Kyaw Than Oo, “Review of the History of Mesoscale Convective System Forecasts on Aviation,” J. Airl. Oper. Aviat. Manag., vol. 2, no. 1, pp. 68–85, 2023, doi: 10.56801/jaoam.v2i1.4.

P. Markowski and Y. Richardson, “Mesoscale Meteorology in Midlatitudes,” Mesoscale Meteorol. Midlatitudes, pp. 1–407, 2010, doi: 10.1002/9780470682104.

F. Wan, Z. Liu, and H. Pang, “Supercell Storm and Extreme Wind in a Linear Mesoscale Convective System,” in 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 2021, pp. 2264–2269. doi: 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00339.

R. A. Maddox, “Meoscale Convective Complexes,” Bull. Am. Meteorol. Soc., vol. 61, no. 11, pp. 1374–1387, 1980, doi: 10.1175/1520-0477(1980)061<1374:mcc>2.0.co;2.

Z. Feng et al., “A Global High-Resolution Mesoscale Convective System Database Using Satellite-Derived Cloud Tops, Surface Precipitation, and Tracking,” J. Geophys. Res. Atmos., vol. 126, no. 8, pp. 1–29, 2021, doi: 10.1029/2020JD034202.

I. L. Jirak, W. R. Cotton, and R. L. McAnelly, “Satellite and radar survey of mesoscale convective system development,” Mon. Weather Rev., vol. 131, no. 10, pp. 2428–2449, 2003, doi: 10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2.

K. Whitehall et al., “Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets,” Earth Sci. Informatics, vol. 8, no. 3, pp. 663–675, 2015, doi: 10.1007/s12145-014-0181-3.

R. Xiang et al., “Monitoring Mesoscale Convective System Using Swin-Unet Network Based on Daytime True Color Composite Images of Fengyun-4B,” Remote Sens., vol. 15, no. 23, 2023, doi: 10.3390/rs15235572.

R. W. S. Saragih, “Identifikasi Karakteristik Mesoscale Convective Complex (MCC) di Wilayah Papua dan Sekitarnya,” J. Fis., vol. 12, no. 2, pp. 42–54, 2022, doi: 10.15294/jf.v12i2.39190.

D. Septiadi and Y. S Nugraha, “Dampaknya Terhadap Curah Hujan Di Benua Maritim Indonesia ( Bmi ) Sepanjang Tahun 2018 Identification of Mesoscale Convective Complex ( Mcc ) and Its Impact Over the Indonesia Maritime Continent During 2018,” no. Mcc, pp. 73–80, 2020.

L. Febrizky, M. Fadli, and W. Wiliam, “Identifikasi Mesoscale Convective Complex (Mcc) Berbasis Data Satelit Himawari-8 Di Pulau Papua Dan Sekitarnya Desember 2021-November 2022,” Opt. J. Pendidik. Fis., vol. 7, no. 2, pp. 294–305, 2023, doi: 10.37478/optika.v7i2.3132.

R. Nurpambudi, H. Ismanto, S. Tinggi, M. Klimatologi, and B. Meteorologi, “Simulasi Mesoscale Convective System Menggunakan Model Wrf-Arw Di Makassar,” pp. 1–11, 2015.

E. Diniyati and Y. Donni Haryanto, “Identifikasi Fenomena Mesoscale Convective System (MCC) di Selat Karimata,” KELUWIH J. Sains dan Teknol., vol. 2, no. 2, pp. 103–111, 2021, doi: 10.24123/saintek.v2i2.4541.

A. F. Rais, R. Yunita, and T. S. Hananto, “Pengaruh Mesoscale Convective System terhadap Hujan Ekstrem Pesisir Barat Sumatra,” Maj. Geogr. Indones., vol. 35, no. 1, p. 9, 2021, doi: 10.22146/mgi.60598.

N. S. Putri, T. Hayasaka, and K. D. Whitehall, “The properties of mesoscale convective systems in Indonesia detected using the grab ‘em tag ‘em graph ‘em (GTG) algorithm,” J. Meteorol. Soc. Japan, vol. 95, no. 6, pp. 391–409, 2017, doi: 10.2151/jmsj.2017-026.

Y. Norman and N. J. Trilaksono, “Investigation of Mesoscale Convective Systems over Indonesian Maritime Continent using Geostationary Meteorological Satellite,” J. Phys. Conf. Ser., vol. 1204, no. 1, 2019, doi: 10.1088/1742-6596/1204/1/012124.

D. E. Nuryanto, H. Pawitan, R. Hidayat, and E. Aldrian, “Characteristics of two mesoscale convective systems (MCSs) over the Greater Jakarta: case of heavy rainfall period 15–18 January 2013,” Geosci. Lett., vol. 6, no. 1, pp. 1–15, 2019, doi: 10.1186/s40562-019-0131-5.

D. E. Nuryanto, “Keterkaitan Antara Monsun Indo-Australia Dengan Variabilitas Musiman Curah Hujan Di Benua Maritim Indonesia Secara Spasial Berbasis Hasil Analisis Data Satelit Trmm,” J. Meteorol. dan Geofis., vol. 13, no. 2, pp. 91–102, 2012, doi: 10.31172/jmg.v13i2.123.

D. E. Nuryanto, R. Hidayat, H. Pawitan, and E. Aldrian, “The evolution of Mesoscale Convective System (MCS) around the Greater Jakarta area on 9 February 2015 using MTSAT Satellite,” Proc. - 39th Asian Conf. Remote Sens. Remote Sens. Enabling Prosper. ACRS 2018, vol. 4, no. February 2015, pp. 2430–2438, 2018.

D. E. Nuryanto, H. Pawitan, R. Hidayat, and E. Aldrian, “Kinematic and Thermodynamic Structures of Mesoscale Convective Systems During Heavy Rainfall in Greater Jakarta,” Makara J. Sci., vol. 22, no. 3, 2018, doi: 10.7454/mss.v22i3.8291.

D. E. Nuryanto, H. Pawitan, R. Hidayat, and E. Aldrian, “The occurrence of the typical mesoscale convective system with a flood-producing storm in the wet season over the Greater Jakarta area,” Dyn. Atmos. Ocean., vol. 96, no. 2, p. 101246, 2021, doi: 10.1016/j.dynatmoce.2021.101246.

T. Rigo and C. Farnell, “Quasi-Linear Convective Systems in Catalonia Detected Through Radar and Lightning Data,” Remote Sens., vol. 16, no. 22, 2024, doi: 10.3390/rs16224262.

E. Tochimoto and H. Niino, “Tornadogenesis in a Quasi-Linear Convective System over Kanto Plain in Japan: A Numerical Case Study,” Mon. Weather Rev., vol. 150, no. 1, pp. 259–282, 2022, doi: 10.1175/MWR-D-20-0402.1.

H. Chen, W. Xu, N. Liu, J. Sun, and J. Fu, “Climatologies of Mesoscale Convective Systems over China Observed by Spaceborne Radars,” Mon. Weather Rev., vol. 150, no. 10, pp. 2697–2717, 2022, doi: 10.1175/MWR-D-22-0002.1.

S. Djakouré, J. Amouin, K. Y. Kouadio, and M. Kacou, “Mesoscale Convective Systems and Extreme Precipitation on the West African Coast Linked to Ocean–Atmosphere Conditions during the Monsoon Period in the Gulf of Guinea,” Atmosphere (Basel)., vol. 15, no. 2, 2024, doi: 10.3390/atmos15020194.

O. Ramos-Pérez, D. K. Adams, C. A. Ochoa-Moya, and A. I. Quintanar, “A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon,” Atmosphere (Basel)., vol. 13, no. 5, pp. 1–27, 2022, doi: 10.3390/atmos13050665.

M. M. Wonsick, R. T. Pinker, and Y. Govaerts, “Cloud variability over the Indian monsoon region as observed from satellites,” J. Appl. Meteorol. Climatol., vol. 48, no. 9, pp. 1803–1821, 2009, doi: 10.1175/2009JAMC2027.1.

H. Ismanto, “Karakteristik Kompleks Konvektif Skala Meso di Benua Maritim,” Tesis Inst. Teknol. Bandung, 2011.

M. A. Azka and N. J. Trilaksono, “COMPARATIVE ANALYSIS OF DIURNAL AND SEASONAL VARIATIONS IN PRECIPITATION OF MESOSCALE CONVECTIVE SYSTEM AND NON-MESOSCALE CONVECTIVE SYSTEM OVER,” no. Mcc, pp. 83–92, 2025.

E. Hermawan et al., “Characteristics of Mesoscale Convective Systems and Their Impact on Heavy Rainfall in Indonesia’s New Capital City, Nusantara, in March 2022,” Adv. Atmos. Sci., vol. 42, no. 2, pp. 342–356, 2025, doi: 10.1007/s00376-024-4102-1.

V. Moron, A. Robertson, and J. Qian, “Multi-scale interactions during the Indonesian monsoon,” May 2010.

S. K. Dash, “Monsoons and monsoon climate,” in Encyclopedia of Earth Sciences Series, J. E. Oliver, Ed., Dordrecht: Springer Netherlands, 2005, pp. 509–516. doi: 10.1007/1-4020-3266-8_142.

Y. Kajikawa, B. Wang, and J. Yang, “A multi-time scale Australian monsoon index,” Int. J. Climatol., vol. 30, no. 8, pp. 1114–1120, 2010, doi: 10.1002/joc.1955.

M. A. Hasibuan and S. Amri, “[ Research Article ] Spatial Correlation between AUSMI and WNPMI Index with Rainfall in Jabodetabek,” vol. 03, no. 1, 2025, doi: 10.69606/geography.v3i1.203.

M. Dafri, S. Nurdiati, A. Sopaheluwakan, and P. Septiawan, “Analysis of climate indicator association with hotspots in Indonesia using heterogeneous correlation map,” IOP Conf. Ser. Earth Environ. Sci., vol. 893, no. 1, 2021, doi: 10.1088/1755-1315/893/1/012041.

F. S. Pandia, B. Sasmito, and A. Sukmono, “Analisis Pengaruh Angin Monsun Terhadap Perubahan Curah Hujan dengan Penginderan Jauh,” J. Geod. Undip, vol. 8, no. 1, pp. 278–287, 2019.

T. R. Syachputra, I. M. Radjawane, and R. Zuraida, “Kajian Statistik Ukuran Besar Butir Sedimen Dan Kaitannya Dengan Variabilitas Iklim Musiman Dan Tahunan Di Muara Gembong, Teluk Jakarta,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 11, no. 3, pp. 683–695, 2019, doi: 10.29244/jitkt.v11i3.21961.

A. Mulsandi et al., “EVALUASI PERFORMA INDEKS MONSUN AUSMI DAN WNPMI DI WILAYAH INDONESIA Evaluation of WNPMI and AUSMI Monsoon Index Performance Over Indonesian Region,” J. Sains Teknol. Modif. Cuaca, vol. 22, no. 2, pp. 61–70, 2021, [Online]. Available: http://www.cdc.noaa.gov/.

L. M. V. Carvalho and C. Jones, “A satellite method to identify structural properties of mesoscale convective systems based on the maximum spatial correlation tracking technique (MASCOTTE),” J. Appl. Meteorol., vol. 40, no. 10, pp. 1683–1701, 2001, doi: 10.1175/1520-0450(2001)040<1683:ASMTIS>2.0.CO;2.

L. A. T. Machado, W. B. Rossow, R. L. Guedes, and A. W. Walker, “Life cycle variations of mesoscale convective systems over the Americas,” Mon. Weather Rev., vol. 126, no. 6, pp. 1630–1654, 1998, doi: 10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

J. Yuan and R. A. Houze, “Global variability of mesoscale convective system anvil structure from A-train satellite data,” J. Clim., vol. 23, no. 21, pp. 5864–5888, 2010, doi: 10.1175/2010JCLI3671.1.

W. C. Chao and B. Chen, “The origin of monsoons,” J. Atmos. Sci., vol. 58, no. 22, pp. 3497–3507, 2001, doi: 10.1175/1520-0469(2001)058<3497:TOOM>2.0.CO;2.

P. J. Webster, “The coupled monsoon system,” The Asian Monsoon, no. 1987, pp. 3–66, 2006, doi: 10.1007/3-540-37722-0_1.

Trismidianto and H. Satyawardhana, “Mesoscale Convective Complexes (MCCs) over the Indonesian Maritime Continent during the ENSO events,” IOP Conf. Ser. Earth Environ. Sci., vol. 149, no. 1, 2018, doi: 10.1088/1755-1315/149/1/012025.

J. Yuan and R. A. Houze, “Deep convective systems observed by a-train in the tropical indo-pacific region affected by the MJO,” J. Atmos. Sci., vol. 70, no. 2, pp. 465–486, 2013, doi: 10.1175/JAS-D-12-057.1.

C. M. Chu and Y. L. Lin, “Effects of orography on the generation and propagation of mesoscale convective systems in a two-dimensional conditionally unstable flow,” J. Atmos. Sci., vol. 57, no. 23, pp. 3817–3837, 2000, doi: 10.1175/1520-0469(2001)057<3817:EOOOTG>2.0.CO;2.

S. Kouhen, B. A. Storer, H. Aluie, D. P. Marshall, and H. M. Christensen, “Convective and Orographic Origins of the Mesoscale Kinetic Energy Spectrum,” Geophys. Res. Lett., vol. 51, no. 21, 2024, doi: 10.1029/2024GL110804.