Air Temperature-based Spatial Modeling of Remote Sensing Data Using Machine Learning Approaches: a Systematic Literature Review
Main Article Content
Abstract
This study presents a systematic review of spatial air temperature modeling based on remote sensing data using machine learning approaches during the period 2016–2025. Using the PRISMA framework, we conducted literature searches in Google Scholar (998 articles) and Scopus (489 articles).. After merging the datasets, removing duplicates, and applying inclusion–exclusion criteria, 12 articles were retained for in-depth analysis. The findings indicate a marked increase in publications since 2021, reflecting growing global interest in integrating remote sensing and machine learning for air temperature estimation. Ensemble algorithms such as Random Forest and XGBoost dominate due to their balance of accuracy and computational efficiency, while temporal deep learning approaches such as LSTM and TCN are emerging as powerful tools for capturing complex atmospheric dynamics. Among remote sensing predictors, Land Surface Temperature (LST) is the most frequently used, often complemented by NDVI, albedo, and elevation to improve spatial accuracy. Geographical context strongly influences methodological performance. XGBoost proves effective in heterogeneous urban areas, Random Forest performs well in mountainous regions, and artificial neural networks demonstrate higher adaptability in extreme environments such as the Greenland ice sheet. Nonetheless, limited ground-based observations and sparse station networks remain key challenges, particularly across tropical and archipelagic regions. This review identifies three major directions for future research: (1) expanding studies to underrepresented tropical regions, (2) leveraging temporal deep learning methods for detecting extreme events, and (3) integrating multisensor data with innovative validation strategies to enhance the robustness and reliability of air temperature modeling.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
H. Shen, Y. Jiang, T. Li, Q. Cheng, C. Zeng, and L. Zhang, “Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data,” Remote Sens Environ, vol. 240, p. 111692, Apr. 2020, doi: 10.1016/j.rse.2020.111692.
P. Su, T. Abera, Y. Guan, and P. Pellikka, “Image-to-Image Training for Spatially Seamless Air Temperature Estimation With Satellite Images and Station Data,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, pp. 3353–3363, 2023, doi: 10.1109/JSTARS.2023.3256363.
C. Wang, X. Bi, Q. Luan, and Z. Li, “Estimation of Daily and Instantaneous Near-Surface Air Temperature from MODIS Data Using Machine Learning Methods in the Jingjinji Area of China,” Remote Sens (Basel), vol. 14, no. 8, p. 1916, Apr. 2022, doi: 10.3390/rs14081916.
D. Parsons, D. Stern, D. Ndanguza, and M. B. Sylla, “Evaluation of Satellite-Based Air Temperature Estimates at Eight Diverse Sites in Africa,” Climate, vol. 10, no. 7, p. 98, Jun. 2022, doi: 10.3390/cli10070098.
S. Liu, H. Su, J. Tian, and W. Wang, “An analysis of spatial representativeness of air temperature monitoring stations,” Theor Appl Climatol, vol. 132, no. 3–4, pp. 857–865, May 2018, doi: 10.1007/s00704-017-2133-6.
I. A. Adeniran, M. Nazeer, M. S. Wong, and P.-W. Chan, “An improved machine learning-based model for prediction of diurnal and spatially continuous near surface air temperature,” Sci Rep, vol. 14, no. 1, p. 27342, Nov. 2024, doi: 10.1038/s41598-024-78349-8.
M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, p. n71, Mar. 2021, doi: 10.1136/bmj.n71.
M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, “Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses,” The FASEB Journal, vol. 22, no. 2, pp. 338–342, Feb. 2008, doi: 10.1096/fj.07-9492LSF.
A. Martín-Martín, M. Thelwall, E. Orduna-Malea, and E. Delgado López-Cózar, “Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations,” Scientometrics, vol. 126, no. 1, pp. 871–906, Jan. 2021, doi: 10.1007/s11192-020-03690-4.
A. Martín-Martín, E. Orduna-Malea, M. Thelwall, and E. Delgado López-Cózar, “Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories,” J Informetr, vol. 12, no. 4, pp. 1160–1177, Nov. 2018, doi: 10.1016/j.joi.2018.09.002.
A.-W. Harzing and S. Alakangas, “Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison,” Scientometrics, vol. 106, no. 2, pp. 787–804, Feb. 2016, doi: 10.1007/s11192-015-1798-9.
A. Martín-Martín, E. Orduna-Malea, M. Thelwall, and E. Delgado López-Cózar, “Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories,” J Informetr, vol. 12, no. 4, pp. 1160–1177, Nov. 2018, doi: 10.1016/j.joi.2018.09.002.
K. G. M. Moons et al., “PROBAST+AI: an updated quality, risk of bias, and applicability assessment tool for prediction models using regression or artificial intelligence methods,” BMJ, p. e082505, Mar. 2025, doi: 10.1136/bmj-2024-082505.
R. F. Wolff et al., “PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies,” Ann Intern Med, vol. 170, no. 1, pp. 51–58, Jan. 2019, doi: 10.7326/M18-1376.
K. G. M. Moons et al., “PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration,” Ann Intern Med, vol. 170, no. 1, pp. W1–W33, Jan. 2019, doi: 10.7326/M18-1377.
I. Kaiser et al., “Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies,” Cancers (Basel), vol. 14, no. 12, p. 3033, Jun. 2022, doi: 10.3390/cancers14123033.
L. Alonso and F. Renard, “A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models,” Remote Sens (Basel), vol. 12, no. 15, p. 2434, Jul. 2020, doi: 10.3390/rs12152434.
P. Noi, J. Degener, and M. Kappas, “Comparison of Multiple Linear Regression, Cubist Regression, and Random Forest Algorithms to Estimate Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data,” Remote Sens (Basel), vol. 9, no. 5, p. 398, Apr. 2017, doi: 10.3390/rs9050398.
L. Li and Y. Zha, “Estimating monthly average temperature by remote sensing in China,” Advances in Space Research, vol. 63, no. 8, pp. 2345–2357, Apr. 2019, doi: 10.1016/j.asr.2018.12.039.
M. K. Alomar et al., “Data-driven models for atmospheric air temperature forecasting at a continental climate region,” PLoS One, vol. 17, no. 11, p. e0277079, Nov. 2022, doi: 10.1371/journal.pone.0277079.
S. Xu et al., “Spatial Downscaling of Land Surface Temperature Based on a Multi-Factor Geographically Weighted Machine Learning Model,” Remote Sens (Basel), vol. 13, no. 6, p. 1186, Mar. 2021, doi: 10.3390/rs13061186.
S. Hong, C. Park, and S. Cho, “A Rail-Temperature-Prediction Model Based on Machine Learning: Warning of Train-Speed Restrictions Using Weather Forecasting,” Sensors, vol. 21, no. 13, p. 4606, Jul. 2021, doi: 10.3390/s21134606.
A. Derdouri, Y. Murayama, and T. Morimoto, “Spatiotemporal Thermal Variations in Moroccan Cities: A Comparative Analysis,” Sensors, vol. 23, no. 13, p. 6229, Jul. 2023, doi: 10.3390/s23136229.
D. McCarty, J. Lee, and H. W. Kim, “Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park Areas,” Sustainability, vol. 13, no. 22, p. 12678, Nov. 2021, doi: 10.3390/su132212678.
M. A. Guillén-Navarro, R. Martínez-España, A. Llanes, A. Bueno-Crespo, and J. M. Cecilia, “A deep learning model to predict lower temperatures in agriculture,” J Ambient Intell Smart Environ, vol. 12, no. 1, pp. 21–34, Jan. 2020, doi: 10.3233/AIS-200546.
T. C. M. Martin, H. R. Rocha, and G. M. P. Perez, “Fine scale surface climate in complex terrain using machine learning,” International Journal of Climatology, vol. 41, no. 1, pp. 233–250, Jan. 2021, doi: 10.1002/joc.6617.
L. Madaus, P. McDermott, J. Hacker, and J. Pullen, “Hyper-local, efficient extreme heat projection and analysis using machine learning to augment a hybrid dynamical-statistical downscaling technique,” Urban Clim, vol. 32, p. 100606, Jun. 2020, doi: 10.1016/j.uclim.2020.100606.
H. Meyer, C. Reudenbach, T. Hengl, M. Katurji, and T. Nauss, “Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation,” Environmental Modelling & Software, vol. 101, pp. 1–9, Mar. 2018, doi: 10.1016/j.envsoft.2017.12.001.
M. Oliveira, L. Torgo, and V. Santos Costa, “Evaluation Procedures for Forecasting with Spatiotemporal Data,” Mathematics, vol. 9, no. 6, p. 691, Mar. 2021, doi: 10.3390/math9060691.
C. Kumar, G. Walton, P. Santi, and C. Luza, “Random Cross-Validation Produces Biased Assessment of Machine Learning Performance in Regional Landslide Susceptibility Prediction,” Remote Sens (Basel), vol. 17, no. 2, p. 213, Jan. 2025, doi: 10.3390/rs17020213.
Y. Wang, M. Khodadadzadeh, and R. Zurita-Milla, “Spatial+: A new cross-validation method to evaluate geospatial machine learning models,” International Journal of Applied Earth Observation and Geoinformation, vol. 121, p. 103364, Jul. 2023, doi: 10.1016/j.jag.2023.103364.
J. Che et al., “Reconstruction of Near-Surface Air Temperature over the Greenland Ice Sheet Based on MODIS Data and Machine Learning Approaches,” Remote Sens (Basel), vol. 14, no. 22, p. 5775, Nov. 2022, doi: 10.3390/rs14225775.
A. Hassani, G. S. Santos, P. Schneider, and N. Castell, “Interpolation, Satellite-Based Machine Learning, or Meteorological Simulation? A Comparison Analysis for Spatio-temporal Mapping of Mesoscale Urban Air Temperature,” Environmental Modeling & Assessment, vol. 29, no. 2, pp. 291–306, Apr. 2024, doi: 10.1007/s10666-023-09943-9.
I. P. Pradhan, K. K. Mahanta, Y.-A. Liou, A. Chauhan, and D. P. Shukla, “Machine learning based high-resolution air temperature modelling from landsat-8, MODIS, and In-Situ measurements with ERA-5 inter-comparison in the data sparse regions of Himachal Pradesh,” Bulletin of Atmospheric Science and Technology, vol. 5, no. 1, p. 22, Dec. 2024, doi: 10.1007/s42865-024-00085-8.
A. Joy, K. Satheesan, and A. Paul, “High-resolution maximum air temperature estimation over India from MODIS data using machine learning,” Remote Sensing Applications: Society and …, 2025, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352938525000163
M. Zheng, J. Zhang, J. Wang, S. Yang, J. Han, and T. Hassan, “Reconstruction of 0.05° all-sky daily maximum air temperature across Eurasia for 2003–2018 with multi-source satellite data and machine learning models,” Atmos Res, vol. 279, p. 106398, Dec. 2022, doi: 10.1016/j.atmosres.2022.106398.
A. Karagiannidis, G. Kyros, K. Lagouvardos, and V. Kotroni, “Real-Time Estimation of Near-Surface Air Temperature over Greece Using Machine Learning Methods and LSA SAF Satellite Products,” Remote Sens (Basel), vol. 17, no. 7, p. 1112, Mar. 2025, doi: 10.3390/rs17071112.
C. Xu, M. Lin, Q. Fang, J. Chen, Q. Yue, and J. Xia, “Air temperature estimation over winter wheat fields by integrating machine learning and remote sensing techniques,” International Journal of Applied Earth Observation and Geoinformation, vol. 122, p. 103416, Aug. 2023, doi: 10.1016/j.jag.2023.103416.
I. Buo, V. Sagris, and J. Jaagus, “Gap-filling satellite land surface temperature over heatwave periods with machine learning,” IEEE Geoscience and Remote …, 2021, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9391991/
R. R. Andriambololonaharisoamalala et al., “Downscaling of Urban Land Surface Temperatures Using Geospatial Machine Learning with Landsat 8/9 and Sentinel-2 Imagery,” Remote Sens (Basel), vol. 17, no. 14, p. 2392, Jul. 2025, doi: 10.3390/rs17142392.
J. Lee, “Estimating Near-Surface Air Temperature From Satellite-Derived Land Surface Temperature Using Temporal Deep Learning: A Comparative Analysis,” IEEE Access, vol. 13, pp. 28935–28945, 2025, doi: 10.1109/ACCESS.2025.3539581.
M. Babaei, fatemeh rajaei, H. Siroosi, and N. Alamdari, “Unmasking the Thermal Signature: Using Remote Sensing and Machine Learning to Study Lake Urmia’s Role in Regulating Land Surface Temperature,” 2024. doi: 10.2139/ssrn.5035577.