Detection of River Change in Modeling Flood Vulnerability using Support Vector Machine (SVM) Methods in Tallo River Makassar City

Penulis

  • Atika Izzaty Universitas Hasanuddin
  • Syahra Dewi Aprian Universitas Hasanuddin
  • Regita Faridatunisa Wijayanti Universitas Hasanuddin
  • Bambang Bakri Universitas Hasanuddin

DOI:

https://doi.org/10.12962/geoid.v20i2.7536

Abstrak

The transformation of river morphology and the rising frequency of flooding in urban environments have emerged as increasingly concerning environmental challenges, particularly in Makassar City. The Tallo River, one of the primary waterways traversing the city, exhibits notable dynamic changes driven by both natural processes. In the contemporary era, flooding stands as one of the most recurrent natural disasters, occurring unpredictably and posing serious risks, especially in major metropolitan areas. Such events frequently disrupt daily activities, leading to traffic congestion and obstructing ground transportation. Residential zones situated near riverbanks are particularly vulnerable to its impacts. Moreover, climate change exacerbates these conditions by contributing to increasing environmental unpredictability and need through a monitoring. The purpose of this research is to analyze river morphology changes and assess flood susceptibility in the Tallo River, Makassar City, using Support Vector Machine (SVM) classification methods. Approximately, there are 20% of the area experienced significant changes during 2018 in Tallo River. As water discharge continues to increase, the volume of water mass also rises accordingly. To detect the spatial distribution of flood vulnerability along the Tallo River, which flows through Makassar City, this study utilizes Land Use and Land Cover (LULC) data from 2017 and 2024. These datasets were classified using the Random Forest model, achieving accuracies of 0.89 and 0.87, respectively values that meet the standards for land use change accuracy. Flood vulnerability is also influenced by low elevation values, particularly areas below 0 meters, which are classified as wetland zones. In the Tallo River area, which is part of the Jeneberang Watershed, the dominant class is moderate flood vulnerability, covering approximately 138.48 hectares. Remote sensing technology combined with machine learning approaches especially supervised classification techniques widely used for both binary and multivariate classification tasks, demonstrating high accuracy in detecting and classifying flood vulnerability.

Referensi

Abdullah, D. M., & Abdulazeez, A. M. (2021). Machine learning applications based on SVM classification a review.

Qubahan Academic Journal, 1(2), 81-90.

Bioresita, F., Puissant, A., Taufik, M., & Gasica, T. (2019). Identification of permanent surface water in Bengawan Solo

River downstream area, Indonesia using Sentinel-1 imagery. IOP Conference Series: Earth and Environmental

Science,

Budiarto, F. A., & Bioresita, F. (2023). Pemanfaatan Citra Sentinel-1 SAR dan Metode Change Detection Approach

Untuk Analisis Sebaran Spasial Wilayah Banjir dan Area Terdampak (Studi Kasus: Banjir Kabupaten Aceh

Utara 2022). JGISE: Journal of Geospatial Information Science and Engineering, 6(2), 153-162.

Chang, M.-J., Chang, H.-K., Chen, Y.-C., Lin, G.-F., Chen, P.-A., Lai, J.-S., & Tan, Y.-C. (2018). A support vector

machine forecasting model for typhoon flood inundation mapping and early flood warning systems. Water,

10(12), 1734.

Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction

of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support

vector machines. Science of the Total Environment, 651, 2087-2096.

Chuan, N. M., Thiruchelvam, S., Ghazali, A., Mustapha, K. N., Sabri, R., Muda, N. Y. J., Norkhairi, F. F., & Yahya, N.

(2018). A review of key activities in hydro meteorological disaster management. International Journal of

Engineering & Technology, 7(4.35), 839-843.

Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin,

Ethiopia. Heliyon, 7(1).

Ganjirad, M., & Delavar, M. (2023). Flood risk mapping using random forest and support vector machine. ISPRS Annals

of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 201-208.

Gašparović, M., & Dobrinić, D. (2020). Comparative assessment of machine learning methods for urban vegetation

mapping using multitemporal sentinel-1 imagery. Remote Sensing, 12(12), 1952.

Hasan, M. M., Nilay, M. S. M., Jibon, N. H., & Rahman, R. M. (2023). LULC changes to riverine flooding: a case study

on the Jamuna River, Bangladesh using the multilayer perceptron model. Results in Engineering, 18, 101079.

Islam, M. T., & Meng, Q. (2022). An exploratory study of Sentinel-1 SAR for rapid urban flood mapping on Google

Earth Engine. International journal of applied earth observation and geoinformation, 113, 103002.

Jayawardena, A. (2015). Hydro-meteorological disasters: Causes, effects and mitigation measures with special reference

to early warning with data driven approaches of forecasting. Procedia IUTAM, 17, 3-12.

Junaid, M., Sun, J., Iqbal, A., Sohail, M., Zafar, S., & Khan, A. (2023). Mapping lulc dynamics and its potential

implication on forest cover in malam jabba region with landsat time series imagery and random forest

classification. Sustainability, 15(3), 1858.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt's SMO algorithm

for SVM classifier design. Neural computation, 13(3), 637-649.

Khairina, S. H., Hans, A., & Arif, I. A. (2024). Efektivitas Kebijakan Penanggulangan Bencana Dalam Konteks

Pembangunan Daerah: Studi Kasus Kota Makassar.

Koggalage, R., & Halgamuge, S. (2004). Reducing the number of training samples for fast support vector machine

classification. Neural Information Processing-Letters and Reviews, 2(3), 57-65.

Kryniecka, K., Magnuszewski, A., & Radecki-Pawlik, A. (2022). Sentinel-1 satellite radar images: A new source of

information for study of river channel dynamics on the lower Vistula river, Poland. Remote Sensing, 14(5), 1056.

Langhammer, J. (2023). Flood simulations using a sensor network and support vector machine model. Water, 15(11),

2004.

Latief, R., Barkey, R. A., & Suhaeb, M. I. (2021). Perubahan Penggunaan Lahan Terhadap Banjir di Kawasan Daerah

Aliran Sungai Maros. Urban Reg. Stud. J, 3(2), 52-59.

Ly, S., Charles, C., & Degré, A. (2013). Different methods for spatial interpolation of rainfall data for operational

hydrology and hydrological modeling at watershed scale: a review. Biotechnologie, agronomie, société et

environnement, 17(2).

Marchetti, A., Di Dio, C., Cangelosi, A., Manzi, F., & Massaro, D. (2023). Developing ChatGPT’s theory of mind.

Frontiers in Robotics and AI, 10, 1189525.

Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021). Accuracy assessment in convolutional neural network-based

deep learning remote sensing studies—Part 2: Recommendations and best practices. Remote Sensing, 13(13),

2591.

Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D. L., Sweet, W., Matthew, R. A., & Luke, A. (2015).

Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future.

Geophysical research letters, 42(22), 9846-9852.

Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., & Mijic, A. (2020). Image segmentation methods for flood

monitoring system. Water, 12(6), 1825.

Munawar, H. S., Hammad, A. W., & Waller, S. T. (2022). Remote sensing methods for flood prediction: A review.

Sensors, 22(3), 960.

Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., & Lewis,

S. L. (2024). The enduring world forest carbon sink. Nature, 631(8021), 563-569.

Paul, S. H., Sharif, H. O., & Crawford, A. M. (2018). Fatalities caused by hydrometeorological disasters in Texas.

Geosciences, 8(5), 186.

Rahmawaty, M. A., & Hasan, A. F. (2023). Mapping The Location of Flood Shelters in Demak Regency using The Spatial

Multi Criteria Evaluation Method. IOP Conference Series: Earth and Environmental Science,

Rahmi, R., Ahmad, A., Yulianur, A., Ramli, I., & Izzaty, A. (2024). Spatial Analysis of Flood Vulnerability Base on

Biophysics Factor the Krueng Baro Watershed in Flood Mitigation Efforts at Aceh, Indonesia. BIO Web of

Conferences,

Rana, V. K., & Suryanarayana, T. M. V. (2020). Performance evaluation of MLE, RF and SVM classification algorithms

for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society

and Environment, 19, 100351.

Ridhayana, A., Darmawan, A., Santoso, T., Yuwono, S. B., & Febryano, I. G. (2022). Perubahan Tutupan Lahan Pada

Daerah Aliran Sungai Sekampung Hulu, Lampung Menggunakan Data Pengindraan Jauh. MAKILA, 16(2), 104-

113.

Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing

and GIS. International Journal of Geosciences, 8(04), 611.

Tanim, A. H., McRae, C. B., Tavakol-Davani, H., & Goharian, E. (2022). Flood detection in urban areas using satellite

imagery and machine learning. Water, 14(7), 1140.

Tarpanelli, A., Mondini, A. C., & Camici, S. (2022). Effectiveness of Sentinel-1 and Sentinel-2 for flood detection

assessment in Europe. Natural Hazards and Earth System Sciences, 22(8), 2473-2489.

Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-ofevidence

and support vector machine models in GIS. Journal of Hydrology, 512, 332-343.

Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2015). Flood susceptibility analysis and its verification using a novel

ensemble support vector machine and frequency ratio method. Stochastic environmental research and risk

assessment, 29(4), 1149-1165.

Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support

vector machine model with different kernel types. Catena, 125, 91-101.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., & Brown,

M. (2012). GMES Sentinel-1 mission. Remote Sensing of environment, 120, 9-24.

Tran, V.-T., Porcher, R., Pane, I., & Ravaud, P. (2022). Course of post COVID-19 disease symptoms over time in the

ComPaRe long COVID prospective e-cohort. Nature communications, 13(1), 1812.

Vikraldo, R. (2024). Identifikasi Longsor menggunakan Metode Change Detection Amplitude di Daerah Aliran Sungai

Salu Battang Universitas Hasanuddin].

Wan, S., & Lei, T. C. (2009). A knowledge-based decision support system to analyze the debris-flow problems at Chen-

Yu-Lan River, Taiwan. Knowledge-Based Systems, 22(8), 580-588.

Xiong, J., Li, J., Cheng, W., Wang, N., & Guo, L. (2019). A GIS-based support vector machine model for flash flood

vulnerability assessment and mapping in China. ISPRS International Journal of Geo-Information, 8(7), 297.

Xu, D., Qi, X., Li, C., Sheng, Z., & Huang, H. (2021). Wise information technology of med: human pose recognition in

elderly care. Sensors, 21(21), 7130.

Yan, J., Jin, J., Chen, F., Yu, G., Yin, H., & Wang, W. (2018). Urban flash flood forecast using support vector machine

and numerical simulation. Journal of Hydroinformatics, 20(1), 221-231.

Yousefi, S., Mirzaee, S., Keesstra, S., Surian, N., Pourghasemi, H. R., Zakizadeh, H. R., & Tabibian, S. (2018). Effects

of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology, 304, 30-39.

Zulfahmi, Z., AS, N. S., & Jufriadi, J. (2016). Dampak Sedimentasi Sungai Tallo terhadap Kerawanan Banjir di Kota

Makassar. Plano Madani: Jurnal Perencanaan Wilayah dan Kota, 5(2), 180-191.

Diterbitkan

2025-10-06

Cara Mengutip

Izzaty, A., Aprian, S. D., Wijayanti, R. F., & Bakri, B. (2025). Detection of River Change in Modeling Flood Vulnerability using Support Vector Machine (SVM) Methods in Tallo River Makassar City. GEOID, 20(2), 80–92. https://doi.org/10.12962/geoid.v20i2.7536

Terbitan

Bagian

Articles