Estimation of 2021 M7.3 Flores Sea Earthquake Displacement Derived from Static GNSS Observation
DOI:
https://doi.org/10.12962/geoid.v20i2.8500Kata Kunci:
Flores Sea earthquake, GNSS, static displacement, half-space modelAbstrak
On 12 December 2021, a Mw 7.3 strike-slip earthquake ruptured a previously unmapped fault in the Flores Sea, later identified as the Kalaotoa fault. The event damaged 345 buildings and displaced nearly 3,900 residents, highlighting the seismic hazard in the Sunda–Banda arc transition zone. In this study, we analyzed static GNSS data from the Indonesian Continuously Operating Reference System (InaCORS) to estimate coseismic displacements. Daily coordinate solutions, corrected for satellite orbit, ionospheric, and tropospheric errors, were processed to extract the coseismic offsets during the event. Results show horizontal displacements of up to 3.0 cm at CFLT, 2.2 cm at CMRE, and 1.9 cm at CUKA, with vertical motions reaching ~1.3 cm uplift at CUKA and ~0.9 cm subsidence at CMRE, which suggests that the earthquake not only incorporates the strike-slip movement but also the dipping movement. Stations near the epicenter moved northwestward, while northern stations moved southeastward, consistent with a right-lateral strike-slip mechanism. To validate the observations, we employed a half-space elastic dislocation model based on centroid moment tensor solutions for fault geometry. The model reproduced the general displacement patterns but showed systematic discrepancies, including overestimation of horizontal offsets by nearly a factor of two at near-epicenter stations (CFLT, CMRE, CUKA, CLWB) and underestimation of vertical motions by up to 2–3 cm. The misfit corresponds to an RMSE of ~1 cm for horizontal and ~3 cm for vertical displacement. These results indicate that a single homogeneous slip model oversimplifies the rupture, suggesting the need for more complex fault segmentation or slip inversion. Overall, this study demonstrates the capability of GNSS to capture coseismic deformation robustly and emphasizes its importance for refining earthquake source models and improving seismic hazard assessment in tectonically complex regions such as eastern Indonesia.
Referensi
Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., ... & Mattone, M. (2011). Very high rate (10 Hz) GPS seismology for moderate‐magnitude earthquakes: The case of the Mw 6.3 L'Aquila (central Italy) event. Journal of Geophysical Research: Solid Earth, 116(B2).
Daryono, M. R., Natawidjaja, D. H., Sapiie, B., & Cummins, P. (2019). Earthquake geology of the lembang fault, West Java, Indonesia. Tectonophysics, 751, 180-191.
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1-9.
Ghayournajarkar, N., & Fukushima, Y. (2020). Determination of the dipping direction of a blind reverse fault from InSAR: case study on the 2017 Sefid Sang earthquake, northeastern Iran. Earth, Planets and Space, Vol: 72, Hal: 1-15.
Govers, R., Furlong, K. P., Van de Wiel, L., Herman, M. W., & Broerse, T. (2018). The geodetic signature of the earthquake cycle at subduction zones: Model constraints on the deep processes. Reviews of Geophysics, 56(1), 6-49.
Gunawan, E., Kholil, M., & Widiyantoro, S. (2022). Coseismic slip distribution of the 14 January 2021 Mamuju-Majene, Sulawesi, earthquake derived from GPS data. Natural Hazards, 111(1), 939-948.
Gunawan, E., Maulida, P., Meilano, I., Irsyam, M., & Efendi, J. (2016). Analysis of coseismic fault slip models of the 2012 Indian Ocean earthquake: Importance of GPS data for crustal deformation studies. Acta Geophysica, 64(6), 2136-2150.
Gunawan, E., Sagiya, T., Ito, T., Kimata, F., Tabei, T., Ohta, Y., ... & Sugiyanto, D. (2014). A comprehensive model of postseismic deformation of the 2004 Sumatra–Andaman earthquake deduced from GPS observations in northern Sumatra. Journal of Asian Earth Sciences, 88, 218-229.
Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian earth sciences, 20(4), 353-431.
Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., & Meilano, I. (2014). Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008–2010. Earth and Planetary Science Letters, 401, 159-171.
Herring, T. A., King, R. W., & McClusky, S. C. (2010). Introduction to gamit/globk. Massachusetts Institute of Technology, Cambridge, Massachusetts, 400, 401.
Hill, E. M., Yue, H., Barbot, S., Lay, T., Tapponnier, P., Hermawan, I., ... & Sieh, K. (2015). The 2012 Mw 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near‐orthogonal, young, oceanic mantle faults. Journal of Geophysical Research: Solid Earth, 120(5), 3723-3747.
Izadkhah, Y. O., & Hosseini, M. (2010). Sustainable neighbourhood earthquake emergency planning in megacities. Disaster Prevention and Management: An International Journal, 19(3), 345-357.
Jalil, A., Fathani, T. F., Satyarno, I., & Wilopo, W. (2021). Liquefaction in Palu: the cause of massive mudflows. Geoenvironmental Disasters, 8(1), 21.
Kanamori, H., & Rivera, L. (2004). Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop. Bulletin of the Seismological Society of America, Vol: 94, Hal: 314-319.
Koulali, A., Mcclusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., ... & Wijanarto, A. B. (2017). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 458, 69-79.
Maulida, P., Laksono, S. A., Herawati, Y. A., Rizkiya, P., & Kurniawan, A. (2024, December). Analysis of Deformation Along the Flores Back-Arc Thrust Using GPS Observation Data. In IOP Conference Series: Earth and Environmental Science (Vol. 1418, No. 1, p. 012033). IOP Publishing.
Maulida, P., Meilano, I., Gunawan, E., & Efendi, J. (2016, May). Analysis of 2012 M8. 6 Indian Ocean earthquake coseismic slip model based on GPS data. In AIP Conference Proceedings (Vol. 1730, No. 1, p. 040006). AIP Publishing LLC.
Mavroulis, S., Mavrouli, M., Lekkas, E., & Tsakris, A. (2023). Managing earthquake debris: Environmental issues, health impacts, and risk reduction measures. Environments, 10(11), 192.
McCaffrey, R. (1988). Active tectonics of the eastern Sunda and Banda arcs. Journal of Geophysical Research: Solid Earth, 93(B12), 15163-15182.
Meilano, I., Salman, R., Rahmadani, S., Shi, Q., Susilo, S., Lindsey, E., ... & Daryono, D. (2021). Source characteristics of the 2019 M w 6.5 Ambon, eastern Indonesia, earthquake inferred from seismic and geodetic data. Seismological Society of America, 92(6), 3339-3348.
Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San Diego.
Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., ... & Umino, N. (2012). Quasi real‐time fault model estimation for near‐field tsunami forecasting based on RTK‐GPS analysis: Application to the 2011 Tohoku‐Oki earthquake (Mw 9.0). Journal of Geophysical Research: Solid Earth, 117(B2).
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am, 75(4), 1135-1154.
Papazachos, C. B., Karakaisis, G. F., Scordilis, E. M., & Papazachos, B. C. (2004). Probabilities of activation of seismic faults in critical regions of the Aegean area. Geophysical Journal International, Vol: 159, Hal: 679-687.
Pusat Studi Gempa Nasional (Indonesia). (2017). Peta sumber dan bahaya gempa Indonesia tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum.
Rahmadani, S., Meilano, I., Susilo, S., Sarsito, D. A., Abidin, H. Z., & Supendi, P. (2022). Geodetic observation of strain accumulation in the Banda Arc region. Geomatics, Natural Hazards and Risk, 13(1), 2579-2596.
Ruhl, C. J., Melgar, D., Grapenthin, R., & Allen, R. M. (2017). The value of real‐time GNSS to earthquake early warning. Geophysical Research Letters, 44(16), 8311-8319.
Sudjono, E. H., Novico, F., Karima, S., Handiani, D. N., Suhermat, M., Rusdiansyah, A., ... & Setyonegoro, W. (2024, June). Tsunami model of the 2021 Flores earthquake and its impact on Labuan Bajo, East Nusa Tenggara. In IOP Conference Series: Earth and Environmental Science (Vol. 1350, No. 1, p. 012032). IOP Publishing.
Supendi, P., Rawlinson, N., Prayitno, B. S., Widiyantoro, S., Simanjuntak, A., Palgunadi, K. H., ... & Arimuko, A. (2022). The Kalaotoa Fault: A newly identified fault that generated the M w 7.3 Flores Sea earthquake. The Seismic Record, 2(3), 176-185.
Tanjung, M. I., Irsyam, M., Sahadewa, A., Iai, S., Tobita, T., & Nawir, H. (2023). Overview of Flowslide in Petobo during liquefaction of the 2018 Palu Earthquake. Soil Dynamics and Earthquake Engineering, 173, 108110.
Twardzik, C., Vergnolle, M., Sladen, A., & Avallone, A. (2019). Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning. Scientific reports, 9(1), 1775.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, Vol: 84, Hal: 974-1002.
Xu, G., Wen, Y., Yi, Y., Guo, Z., Wang, L., & Xu, C. (2023). Geodetic constraints of the 2015 M w6. 5 Alor, East Indonesia earthquake: a strike-slip faulting in the convergent boundary. Geophysical Journal International, 235(1), 247-259.
