Analysis of Mangrove Species Detection Performance on Multiresolution Satellite Imagery Using Linear Spectral Unmixing

Main Article Content

Indah Fultriasantri
Aldea Noor Alina
Lalu Muhamad Jaelani
Hartanto Sanjaya
Abdul Rauf Abdul Rasam

Abstract

The Pamurbaya mangrove conservation area in East Surabaya is crucial for coastal protection, but it is vulnerable to degradation due to human activities and land-use changes. Species distribution maps are essential for understanding ecological functions, such as carbon sequestration, salinity tolerance, and ecosystem stability. This study utilizes multiresolution remote sensing data from WorldView-2 satellite imagery to map mangrove and detailed species-level. Random Forest is utilized to differentiate mangrove and non-mangrove, while Linear Spectral Unmixing allows for detailed mangrove species distribution. Further analysis was carried out to determine at what resolution the LSU works optimally. The imagery was served in 0.5 meter resolution and down-sampled to 5 meter, 10, 20, 30, and 50 meter resolutions. This study obtained that LSU were able to differentiate mangroves according to its endmember and working optimally at medium resolution (10–30 m), with overall accuracy increasing from 70% (10 m) to 75% (30 m) and Kappa value increasing from 53.7 to 60.41. High resolution (0.5–10 m) provides more detailed mapping but is optimal for species with small and scattered distributions. Meanwhile, low resolution (20–50 m) tends to cause overestimation or aggregation of species.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
I. Fultriasantri, A. N. . Alina, L. M. Jaelani, H. . Sanjaya, and A. R. . Abdul Rasam, “Analysis of Mangrove Species Detection Performance on Multiresolution Satellite Imagery Using Linear Spectral Unmixing ”, INDERAJA, vol. 19, no. 1, pp. 46–61, Jul. 2025.
Section
Articles

References

S. Abdul Azeez et al., “Multi-decadal changes of mangrove forest and its response to the tidal dynamics of thane creek, Mumbai,” J Sea Res, vol. 180, Feb. 2022, doi: 10.1016/j.seares.2021.102162.

T. V. Tran, R. Reef, X. Zhu, and A. Gunn, “Characterising the distribution of mangroves along the southern coast of Vietnam using multi-spectral indices and a deep learning model,” Science of the Total Environment, vol. 923, May 2024, doi: 10.1016/j.scitotenv.2024.171367.

J. B. Thayn, “Monitoring Narrow Mangrove Stands in Baja California Sur, Mexico Using Linear Spectral Unmixing,” Marine Geodesy, vol. 43, no. 5, pp. 493–508, Sep. 2020, doi: 10.1080/01490419.2020.1751753.

P. J. Mumby et al., “Mangroves enhance the biomass of coral reef fish communities in the Caribbean,” Nature, vol. 427, no. 6974, pp. 533–536, Feb. 2004, doi: 10.1038/nature02286.

E. B. Barbier, S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier, and B. R. Silliman, “The value of estuarine and coastal ecosystem services,” May 2011. doi: 10.1890/10-1510.1.

Rahman et al., “Mangrove ecosystems in Southeast Asia region: Mangrove extent, blue carbon potential and CO2 emissions in 1996–2020,” Science of The Total Environment, vol. 915, p. 170052, Mar. 2024, doi: 10.1016/j.scitotenv.2024.170052.

L. M. Jaelani et al., “Mapping Mangrove Species Distribution and Density Using Sentinel-2 Satellite Imagery and Spectral Analysis,” Journal of Human, Earth, and Future, vol. 6, no. 1, pp. 1–11, Mar. 2025, doi: 10.28991/HEF-2025-06-01-01.

W. A. Timisela, G. Mardiatmoko, and F. Puturuhu, “ANALISA JENIS MANGROVE MENGGUNAKAN CITRA UAV DENGAN KLASIFIKASI OBIA,” JURNAL HUTAN PULAU-PULAU KECIL, vol. 4, no. 2, pp. 132–149, Oct. 2020, doi: 10.30598/jhppk.2020.4.2.132.

R. Asy’Ari et al., “Mapping mangrove forest distribution on Banten, Jakarta, and West Java Ecotone Zone from Sentinel-2-derived indices using cloud computing based Random Forest,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), vol. 12, no. 1, pp. 97–111, May 2022, doi: 10.29244/jpsl.12.1.97-111.

M. F. Hidayatullah, M. Kamal, and P. Wicaksono, “Geographic Object-Based Image Analysis for Mangrove Species Distribution Mapping,” 2023, pp. 207–210. doi: 10.1007/978-3-031-43169-2_43.

M. K. Heenkenda, K. E. Joyce, S. W. Maier, and R. Bartolo, “Mangrove species identification: Comparing WorldView-2 with aerial photographs,” Remote Sens (Basel), vol. 6, no. 7, pp. 6064–6088, 2014, doi: 10.3390/rs6076064.

N. Patidar and A. K. Keshari, “A rule-based spectral unmixing algorithm for extracting annual time series of sub-pixel impervious surface fraction,” Int J Remote Sens, vol. 41, no. 10, pp. 3970–3992, May 2020, doi: 10.1080/01431161.2019.1711243.

Y. Zhang, T. Wang, S. Mei, and Q. Du, “Subpixel Mapping of Hyperspectral Images Using a Labeled-Unlabeled Hybrid Endmember Library and Abundance Optimization,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 5036–5047, 2020, doi: 10.1109/JSTARS.2020.3012982.

L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.

A. N. Alina, M. A. Syariz, L. M. Jaelani, and N. Hayati, “Accuracy Results Comparison of Machine Learning Classification for Mangroves on Worldview-2 Satellite Imagery,” 2024.

R. Rajabi and H. Ghassemian, “Sparsity Constrained Graph Regularized NMF for Spectral Unmixing of Hyperspectral Data,” Journal of the Indian Society of Remote Sensing, vol. 43, no. 2, pp. 269–278, Jun. 2015, doi: 10.1007/s12524-014-0408-2.

N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process Mag, vol. 19, no. 1, pp. 44–57, 2002, doi: 10.1109/79.974727.

L. M. Jaelani, R. Limehuwey, N. Kurniadin, A. Pamungkas, E. S. Koenhardono, and A. Sulisetyono, “Estimation of TSS and Chl-a Concentration from Landsat 8-OLI: The Effect of Atmosphere and Retrieval Algorithm,” 2016. [Online]. Available: http://espa.cr.usgs.gov/

M. M. R. Devy, H. Sanjaya, L. Y. Irawan, I. K. Astina, H. Sadmono, and A. Andayani, “Large-Extent Mangrove Species Mapping Using Landsat 9 OLI-2: A Subpixel Analysis,” in 2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology: Understanding the Interaction of Land, Ocean, and Atmosphere: Smart City and Disaster Mitigation for Regional Resilience, AGERS 2022 - Proceeding, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 130–136. doi: 10.1109/AGERS56232.2022.10093313.

G. M. Foody, “Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification,” Remote Sens Environ, vol. 239, no. December 2019, p. 111630, 2020, doi: 10.1016/j.rse.2019.111630.

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and R. O. Green, “Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models,” Remote Sens Environ, vol. 65, no. 3, 1998, doi: 10.1016/S0034-4257(98)00037-6.

A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd edition (2019, O’reilly). O’Reilly Media, 2019.

N. M. Short, “The Landsat tutorial workbook: basics of satellite remote sensing.,” 1982, doi: 10.2307/635039.

J. R. Jensen and K. Lulla, “Introductory digital image processing: A remote sensing perspective,” Geocarto Int, vol. 2, no. 1, p. 65, 1987, doi: 10.1080/10106048709354084.

M. M. R. Devy, H. Sanjaya, L. Y. Irawan, I. K. Astina, H. Sadmono, and A. Andayani, “Large-Extent Mangrove Species Mapping Using Landsat 9 OLI-2: A Subpixel Analysis,” in 2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology: Understanding the Interaction of Land, Ocean, and Atmosphere: Smart City and Disaster Mitigation for Regional Resilience, AGERS 2022 - Proceeding, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 130–136. doi: 10.1109/AGERS56232.2022.10093313.