WET TROPOSPHERIC CORRECTION’S IMPACT ON SEA LEVEL ANOMALY AROUND THE INDONESIAN SEAS
Keywords:
wet tropospheric correction, sea level anomaly, microwave radiometer, ECMWF re-analysis, Indonesian seasAbstract
Global sea level rise in the satellite altimetry era is about 3 mm/yr. The one of main source of uncertainty of global sea level is the wet tropospheric from onboard microwave radiometer which is up to 0.3 mm/yr. The focus of this study is to assess of various wet tropospheric correction impact on sea level anomaly in the Indonesian seas. The result of sea level anomaly linear trend difference between Global Navigation Satellite System and Microwave Radio Meter or ECMWF Re-Analysis Interim is 0.18 mm/yr in agreement with the global wet tropospheric uncertainty.
References
Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H. B., . . . Cazenave, A. (2016). Satellite Altimetry-Based Sea Level at Global and Regional Scales. Surveys in Geophysics, 38(1), 7-31. doi:10.1007/s10712-016-9389-8
Ablain, M., Cazenave, A., Valladeau, G., & Guinehut, S. (2009). A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Science, 5, 193-201.
Andersen, O. B., & Scharroo, R. (2011). Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination. In S. Vignudelli, A. G. Kostianoy, P. Cipollini, & J. Benveniste (Eds.), Coastal Altimetry (pp. 103-145). Berlin Heidelberg: Springer-Verlag.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., & Ware, R. H. (1994). GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. Jounal of Applied Meteorology, 33, 379-386.
Brown, S. (2010). A Novel Near-Land Radiometer Wet Path-Delay Retrieval Algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, 48(4), 1986-1992. doi:10.1109/tgrs.2009.2037220
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., . . . Unnikrishnan, A. S. (2013). Sea Level Change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Ed.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1137-1216). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Church, J. A., White, N. J., & Hunter, J. R. (2006). Sea-level rise at tropical Pacific and Indian Ocean islands. Global and Planetary Change, 53(3), 155-168. doi:10.1016/j.gloplacha.2006.04.001
Cleveland, R. B., Cleeland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: a Seasonal-Trend Decomposition Procedur Base on Loess. Journal of Official Statistics, 6(1), 3-73.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., . . . Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. doi:10.1002/qj.828
Desai, S. D., & Haines, B. J. (2004). Monitoring Measurements from the Jason-1 Microwave Radiometer and Independent Validation with GPS. Marine Geodesy, 27(1-2), 221-240. doi:10.1080/01490410490465337
England, M. H., & Huang, F. (2005). On the Interannual Variability of the Indonesian Throughflow and Its Linkage with ENSO. Journal of Climate, 18, 1435-1444.
Fernandes, M. J., Lázaro, C., Ablain, M., & Pires, N. (2015). Improved wet path delays for all ESA and reference altimetric missions. Remote Sensing of Environment, 169, 50-74. doi:10.1016/j.rse.2015.07.023
Fernandes, M. J., Lazaro, C., Nunes, A. L., Pires, N., Bastos, L., & Mendes, V. B. (2010). GNSS-Derived Path Delay: An Approach to Compute the Wet Tropospheric Correction for Coastal Altimetry. IEEE Geoscience and Remote Sensing Letters, 7(3), 596-600. doi:10.1109/lgrs.2010.2042425
Fernandes, M. J., Pires, N., Lázaro, C., & Nunes, A. L. (2013). Tropospheric delays from GNSS for application in coastal altimetry. Advances in Space Research, 51(8), 1352-1368. doi:10.1016/j.asr.2012.04.025
Gordon, A. L. (2005). Oceanography of the Indonesian Seas and Their Throughflow. Oceanography, 18 (4), 14–27.
Keihm, S., & Ruf, C. S. (1995). Role of Water Vapor Radiometers for In-Flight Calibration of the TOPEX Microwave Radiometer. Marine Geodesy, 18, 139-156.
Legeais, J. F., Ablain, M., & Thao, S. (2014). Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level. Ocean Science, 10(6), 893-905. doi:10.5194/os-10-893-2014
Mendes, V. B., Prates, G., Santos, L., & Langley, R. B. (2000, January 2000). An Evaluation of the accuracy of models of the determination of the weighted mean temperature of atmosphere. Paper presented at the Proceedings of the 2000 National Technical Meeting of The Institute of Navigation, Anaheim, CA.
Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328(5985), 1517-1520. doi:10.1126/science.1185782
Poerbandono, Handoko, E., & Adytia, D. (2018). Extremes of residual water levels in the West of Java Sea, Indonesia. AIP Conference Proceedings, 1987, 020081. doi:10.1063/1.5047366
Scharroo, R., Lillibridge, J. L., Smith, W. H. F., & Schrama, E. J. O. (2004). Cross-Calibration and Long-Term Monitoring of the Microwave Radiometers of ERS, TOPEX, GFO, Jason, and Envisat. Marine Geodesy, 27(1-2), 279-297. doi:10.1080/01490410490465265
Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T., Pujiana, K., & Wijffels, S. E. (2014). The Indonesian seas and their role in the coupled ocean–climate system. Nature Geoscience, 7(7), 487-492. doi:10.1038/ngeo2188
Wei, J., Li, M. T., Malanotte-Rizzoli, P., Gordon, A. L., & Wang, D. X. (2016). Opposite Variability of Indonesian Throughflow and South China Sea Throughflow in the Sulawesi Sea. Journal of Physical Oceanography, 46(10), 3165-3180. doi:10.1175/jpo-d-16-0132.1