Refining the Indonesian Geoid Model: A Comparative Study of Global Geopotential Models in East Kalimantan

Authors

  • Fahri Dean Alvito Institut Teknologi Sumatera
  • Zulfikar Adlan Nadzir Institut Teknologi Sumatera
  • Misfallah Nurhayati Institut Teknologi Sumatera

DOI:

https://doi.org/10.12962/geoid.v20i2.3068

Keywords:

geoid, GGM, fitting, INAGEOID2020, validation

Abstract

Gravity field along with its derivative, geoid, is one of the important pillars of Geodesy. The geoid is utilized in many countries as the vertical reference system, Indonesia as well. However, Indonesia is unique in topography, made the computation of geoid model throughout the archipelago a challenge. The development of geoid model in Indonesia has 4 phases, with the latest in 2020 and 2023. INAGEOID2020 is the Indonesian geoid model used as vertical reference frame for vertical control in Indonesia, updated to version 2.0 in 2023. However, it has not achieved the target accuracy of 5 cm throughout the country. INAGEOID2020 v2.0 is based on the EGM2008 global geopotential model (GGM) with order and degree 360, which is now nearly 20 years old. The implementation of EGM2008 into the regional model also lacked a fitting process, relying solely on functional calculations. This study proposes using modern GGMs, namely EGM2008, XGM2019e, and SGG-UGM-2, along with a fitting process to improve geoid modeling, to optimize the future iteration of Indonesian Geoid Model. The research compares the gravimetric undulations of these models to geometric undulations at 264 validation points, both with and without fitting in East Kalimantan. The fitting improved the accuracy of EGM2008 and XGM2019e, but SGG-UGM-2 performed worse due to elevation discrepancies both before and after the fitting, mainly due to difference on the starting point close to the coast. XGM2019e at degree 2190, truncated to 720 and 360 showed the best results after the fitting, achieving standard deviation and root mean square error (RMSE) values of 0.061 m and 0.064 m, respectively. The performance of EGM2008 is not far behind XGM2019e. This finding indicates that the XGM2019e is the best out the trio, making it a promising alternative to be utilized for future geoid modeling in Indonesia.

References

Andersen, O. B., & Knudsen, P. (2019). The DTU17 Global Marine Gravity Field: First Validation Results. In S. P. Mertikas & R. Pail (Eds.), Fiducial Reference Measurements for Altimetry (Vol. 150, pp. 83–87). Springer International Publishing. https://doi.org/10.1007/1345_2019_65

Barthelmes, F. (2013). Definition of functionals of the geopotential and their calculation from spherical harmonic models: Theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM); http://icgem.gfz-potsdam.de/ICGEM/ ; revised edition. Scientific Technical Report; 09/02; ISSN 1610-0956. https://doi.org/10.2312/GFZ.B103-0902-26

Bramanto, B., Prijatna, K., Fathulhuda, M. S., & Pahlevi, A. M. (2022). Gravimetric Geoid Modeling by Stokes and Second Helmert’s Condensation Method in Yogyakarta, Indonesia. In J. T. Freymueller & L. Sánchez (Eds.), Geodesy for a Sustainable Earth (Vol. 154, pp. 147–153). Springer International Publishing. https://doi.org/10.1007/1345_2022_149

De Silva, W. J. P., & Prasanna, H. M. I. (2023). Comparison of different global DTMs and GGMs over Sri Lanka. Journal of Applied Geodesy, 17(1), 29–38. https://doi.org/10.1515/jag-2022-0026

Erol, B., Sideris, M. G., & Çelik, R. N. (2009). Comparison of global geopotential models from the champ and grace missions for regional geoid modelling in Turkey. Studia Geophysica et Geodaetica, 53(4), 419–441. https://doi.org/10.1007/s11200-009-0032-8

Featherstone, W. E., Filmer, M. S., Claessens, S. J., Kuhn, M., Hirt, C., & Kirby, J. F. (2012). Regional geoid-model-based vertical datums – some Australian perspectives. Journal of Geodetic Science, 2(4), 370–376. https://doi.org/10.2478/v10156-012-0006-6

Feng, W., Zhong, M., & Xu, H. (2012). Sea level variations in the South China Sea inferred from satellite gravity, altimetry, and oceanographic data. Science China Earth Sciences, 55(10), 1696–1701. https://doi.org/10.1007/s11430-012-4394-3

Förste, C., Bruinsma, Sean. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (p. 55102156 Bytes, 3 Files) [Application/octet-stream,application/octet-stream,application/zip]. GFZ Data Services. https://doi.org/10.5880/ICGEM.2015.1

Godah, W., & Krynski, J. (2015). Comparison of GGMs based on one year GOCE observations with the EGM08 and terrestrial data over the area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35, 128–135. https://doi.org/10.1016/j.jag.2013.11.003

Goyal, R., Featherstone, W. E., Claessens, S. J., Dikshit, O., & Balasubramanian, N. (2021). The Indian gravimetric geoid model based on the Stokes-Helmert approach with Vaníček-Kleusberg modification of the Stokes kernel: IndGG-SH2021 (Version 1.0) [Dataset]. GFZ Data Services. https://doi.org/10.5880/ISG.2021.009

Hartanto, P., & Chabibi, F. F. (2019). UJI KETELITIAN MODEL GEOPOTENSIAL GLOBAL DI PULAU JAWA DAN MADURA. Seminar Nasional Geomatika, 3, 827. https://doi.org/10.24895/SNG.2018.3-0.1071

Hartanto, P., Huda, S., Putra, W., Variandy, E. D., Triarahmadhana, B., Pangastuti, D., Pahlevi, A. M., & Hwang, C. (2018). Estimation of marine gravity anomaly model from satellite altimetry data (Case Study: Kalimantan and Sulawesi Waters-Indonesia). IOP Conference Series: Earth and Environmental Science, 162, 012038. https://doi.org/10.1088/1755-1315/162/1/012038

Heliani, L. S., & Noviantara, H. (2024). Pengaruh Densitas Topografi Terhadap Ketelitian Model Geoid: Studi kasus Pulau Sulawesi. JGISE: Journal of Geospatial Information Science and Engineering, 7(2), 191. https://doi.org/10.22146/jgise.102122

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS — Global Navigation Satellite Systems. Springer Vienna. https://doi.org/10.1007/978-3-211-73017-1

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy. Springer Vienna. https://doi.org/10.1007/978-3-211-33545-1

Jiang, T., Dang, Y., & Zhang, C. (2020). Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: A case study in the mountainous area, Colorado. Earth, Planets and Space, 72(1), 189. https://doi.org/10.1186/s40623-020-01287-y

Kahar, J. (1982). Geoid Determination in Archipelago Area. Processing of General Meeting of AIG, 466–471.

Kahar, J., Kasenda, A., & Prijatna, K. (1996). The Indonesian Geoid Model 1996. 613–620.

Lestari, R., Bramanto, B., Prijatna, K., Pahlevi, A. M., Putra, W., Muntaha, R. I. S., & Ladivanov, F. (2023). Local geoid modeling in the central part of Java, Indonesia, using terrestrial-based gravity observations. Geodesy and Geodynamics, 14(3), 231–243. https://doi.org/10.1016/j.geog.2022.11.007

Liang, W., Li, J., Xu, X., Zhang, S., & Zhao, Y. (2020). A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering, 6(8), 860–878. https://doi.org/10.1016/j.eng.2020.05.008

Müller, C. (1966). Spherical Harmonics. Springer Berlin / Heidelberg.

Nadzir, Z. A., & Rahmadhani, N. (2024). EVALUASI DAN KOMPARASI DARI MODEL ANOMALI GAYA BERAT di LAUTAN INDONESIA. Jurnal Sains Informasi Geografi, 7(2), 99. https://doi.org/10.31314/jsig.v7i2.3073

Odumosu, J. O., Nnam, V. C., & Nwadialor, I. J. (2021). An assessment of spatial methods for merging terrestrial with GGM-derived gravity anomaly data. Journal of African Earth Sciences, 179, 104202. https://doi.org/10.1016/j.jafrearsci.2021.104202

Pahlevi, A., Bramanto, B., Triarahmadhana, B., Huda, S., Pangastuti, D., Nur, A., Wijaya, D. D., Prijatna, K., Julianto, M., & Wijanarto, A. B. (2019). Airborne gravity survey, towards a precise Indonesian geoid model (case study: Sumatera Island). IOP Conference Series: Earth and Environmental Science, 389(1), 012050. https://doi.org/10.1088/1755-1315/389/1/012050

Pahlevi, A., Syafarianty, A., Susilo, S., Lumban-Gaol, Y., Putra, W., Triarahmadhana, B., Bramanto, B., Muntaha, R., El Fadhila, K., Ladivanov, F., Amrossalma, H., Islam, L., Novianto, D., Huda, S., Wismadi, T., Efendi, J., Ramadhan, A., Wijaya, D., Prijatna, K., & Pramono, G. (2024). Geoid Undulation Model as Vertical Reference in Indonesia. Scientific Data, 11(1), 822. https://doi.org/10.1038/s41597-024-03646-w

Pail, R. (2014). CHAMP-, GRACE-, GOCE-Satellite Projects. In E. Grafarend (Ed.), Encyclopedia of Geodesy (pp. 1–11). Springer International Publishing. https://doi.org/10.1007/978-3-319-02370-0_29-1

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4), 2011JB008916. https://doi.org/10.1029/2011JB008916

Sabri, L. M., Sudarsono, B., & Pahlevi, A. (2021). Geoid of South East Sulawesi from airborne gravity using Hotine approach. IOP Conference Series: Earth and Environmental Science, 731(1), 012014. https://doi.org/10.1088/1755-1315/731/1/012014

Sansò, F., & Sideris, M. G. (2013). Geoid determination: Theory and methods. Springer.

Seeber, G. (2003). Satellite geodesy (2nd completely rev. and extended ed). Walter de Gruyter.

Setianto, A., & Triandini, T. (2015). COMPARISON OF KRIGING AND INVERSE DISTANCE WEIGHTED (IDW) INTERPOLATION METHODS IN LINEAMENT EXTRACTION AND ANALYSIS. Journal of Applied Geology, 5(1). https://doi.org/10.22146/jag.7204

Torge, W., Müller, J., & Pail, R. (2023). Geodesy. De Gruyter. https://doi.org/10.1515/9783110723304

Udama, Z. A., Claessens, S., Anjasmara, I. M., & Syafarianty, A. N. (2024). Analysis of different combinations of gravity data types in gravimetric geoid determination over Bali. Journal of Applied Geodesy, 18(3). https://doi.org/10.1515/jag-2023-0042

Vaníček, P., & Krakiwsky, E. J. (1995). Geodesy: The concepts (2. ed., 5. print). Elsevier.

Zhang, S., Abulaitijiang, A., Andersen, O. B., Sandwell, D. T., & Beale, J. R. (2021). Comparison and evaluation of high-resolution marine gravity recovery via sea surface heights or sea surface slopes. Journal of Geodesy, 95(6), 66. https://doi.org/10.1007/s00190-021-01506-8

Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 66. https://doi.org/10.1007/s00190-020-01398-0

Downloads

Published

2025-09-05

How to Cite

Alvito, F. D., Nadzir, Z. A., & Nurhayati, M. (2025). Refining the Indonesian Geoid Model: A Comparative Study of Global Geopotential Models in East Kalimantan. GEOID, 20(2), 9–21. https://doi.org/10.12962/geoid.v20i2.3068

Issue

Section

Articles