Change Detection of Topographic Features using Iteratively Reweighted Multivariate Alteration Detection and Random Forest Classification for Partial Updating of Indonesian Topographic Map
DOI:
https://doi.org/10.12962/geoid.v20i2.6364Keywords:
Partial Updating Maps, Random Forest Classification, Change Detection; iMAD, Sentinel-2 ImageryAbstract
The current demand for geospatial information is increasingly urgent across various sectors, making the provision of base maps a top priority that is currently being accelerated. However, a major challenges faced today is the outdated nature of the Indonesian Topographic Map (Peta Rupabumi Indonesia/RBI), many of which were produced several years ago and are now considered obsolete. Updating the data is essential to ensure the validity of geospatial information in accordance with current conditions. At present, the detection of change in topographic feature is still largely conducted manually, thereby necessitating the exploration of methods to accelerate partial map updating processes. This study implements a change detection approach using Iteratively Reweighted Multivariate Alteration Detection (iMAD) method, in combination with Random Forest (RF) and Rule-based Classification. The iMAD technique is relatively insensitive to radiometric differences between acquisition times and simultaneously considers all spectral bands. Its iterative process improves accuracy, making it suitable for change detection in partial mas updates. Random Forest Classification supports the interpretation of iMAD results by providing information on changes in land cover types. The iMAD results indicate that the majority of detected changes fall under the ambiguous category (49,18%), followed by unchanged pixels (24,78%), significant changes (20,91%), and agricultural changes (5,13%). Overall accuracy of Random Forest Classification reached 90,45 % in 2019 and 93,20 % in 2023. The Kappa coefficient was 0,8920 and 0,8936 for 2019 and 2023, respectively. The final change detection results, after applying rule-based classification show that 19,70% of the study area experienced change, while 80,30% remained unchanged. Therefore, this approach presents an effective and efficient alternative for conducting partial updates of the Indonesian Topographic Map (RBI).
References
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A.,
Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing
Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 13, 5326–5350.
https://doi.org/10.1109/JSTARS.2020.3021052
Badan Informasi Geospasial (BIG). (2024). Keputusan Kepala Badan Informasi Geospasial Nomor 121.4 Tahun 2024
Tentang Klasifikasi Unsur Penutup Lahan untuk Peta Rupabumi Indonesia Skala 1:1.000, 1:5.000, 1:25.000,
1:50.000, 1:250.000, 1:500.000, dan 1:1.000.000. Badan Informasi Geospasial.
Badan Standardisasi Nasional (BSN). (2010). SNI 7645:2010 Peta Penutup Lahan.
Cantemir, A., Visan, A., Parvulescu, N., & Dogaru, M. (2016). The use of multiple data sources in the process of
topographic maps updating. International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences - ISPRS Archives, 41(July), 19–24. https://doi.org/10.5194/isprsarchives-XLI-B4-19-2016
Canty, M. J. (2014). Image Analysis, Classification and Change Detection in Remote Sensing. In Image Analysis,
Classification and Change Detection in Remote Sensing (Fourth Edi). Taylor & Francis.
https://doi.org/10.1201/b17074
Canty, M. J., & Nielsen, A. A. (2008). Automatic radiometric normalization of multitemporal satellite imagery with the
iteratively re-weighted MAD transformation. Remote Sensing of Environment, 112(3), 1025–1036.
https://doi.org/10.1016/j.rse.2007.07.013
Canty, M. J., & Nielsen, A. A. (2012). Linear and kernel methods for multivariate change detection. Computers and
Geosciences, 38(1), 107–114. https://doi.org/10.1016/j.cageo.2011.05.012
Chen, H., Lan, C., Song, J., Broni-Bediako, C., Xia, J., & Yokoya, N. (2024). ObjFormer: Learning Land-Cover Changes
from Paired OSM Data and Optical High-Resolution Imagery via Object-Guided Transformer. IEEE Transactions
on Geoscience and Remote Sensing, 62, 1–21. https://doi.org/10.1109/TGRS.2024.3410389
Congalton, R. G., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (2nd
ed.). CRC Press.
Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data. Taylor & Francis.
Duncan, P., & Smit, J. (2012). an Investigation of Automatic Change Detection for Topographic Map Updating. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIXB7(
September), 311–316. https://doi.org/10.5194/isprsarchives-xxxix-b7-311-2012
Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of Remote Sensing, 18(3), 679–685.
https://doi.org/10.1080/014311697219015
Harto, M. K., & Basuki, A. (2021). Deteksi Serangan DDoS Pada Jaringan Berbasis SDN Dengan Klasifikasi Random
Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(4), 1329–1333. http://j-ptiik.ub.ac.id
Izquierdo-Verdiguier, E., & Zurita-Milla, R. (2020). An evaluation of Guided Regularized Random Forest for
classification and regression tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 88(October 2019). https://doi.org/10.1016/j.jag.2020.102051
Liu, H., & Zhou, Q. (2004). Accuracy analysis of remote sensing change detection by rule-based rationality evaluation
with post-classification comparison. International Journal of Remote Sensing, 25(5), 1037–1050.
https://doi.org/10.1080/0143116031000150004
Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote
Sensing, 25(12), 2365–2401. https://doi.org/10.1080/0143116031000139863
Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification
performance. International Journal of Remote Sensing, 1161. https://doi.org/10.1080/01431160600746456
Ma, L., Yan, Z., Li, M., Liu, T., Tan, L., Wang, X., He, W., Wang, R., He, G., Lu, H., & Blaschke, T. (2024). Deep
Learning Meets OBIA : Tasks , Challenges , Strategies , and Perspectives. IEEE Geoscience and Remote Sensing
Magazine, 1–25.
Matarira, D., Mutanga, O., & Naidu, M. (2022). Google Earth Engine for Informal Settlement Mapping: A Random Forest
Classification Using Spectral and Textural Information. Remote Sensing, 14(20).
https://doi.org/10.3390/rs14205130
Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 12.
Nguyen, H. T. T., Doan, T. M., & Radeloff, V. (2018). Applying Random Forest classification to map Land use/Land
cover using Landsat 8 OLI. International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences - ISPRS Archives, 42(3W4), 363–367. https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-2018
Nielsen, A. A. (2007). The regularized iteratively reweighted MAD method for change detection in multi- and
hyperspectral data. IEEE Transactions on Image Processing, 16(2), 463–478.
https://doi.org/10.1109/TIP.2006.888195
Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). Multivariate Alteration Detection (MAD) and MAF
Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Elsevier
Science Inc.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for
estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57.
https://doi.org/10.1016/j.rse.2014.02.015
Pathak, S. (2014). New Change Detection Techniques to monitor land cover dynamics in mine environment. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(8), 875–
879. https://doi.org/10.5194/isprsarchives-XL-8-875-2014
Pemerintah Indonesia. (2020). Undang-undang (UU) Nomor 11 Tahun 2020 tentang Cipta Kerja. Pemerintah Indonesia.
https://peraturan.bpk.go.id/Details/149750/uu-no-11-tahun-2020
Pemerintah Indonesia. (2021). Peraturan Pemerintah (PP) Nomor 45 Tahun 2021 tentang Penyelenggaraan Informasi
Geospasial. Pemerintah Indonesia. https://peraturan.bpk.go.id/Details/161966/pp-no-45-tahun-2021
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the
effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and
Remote Sensing, 67(1), 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
Singh, A. (1989). Review Articlel: Digital change detection techniques using remotely-sensed data. International Journal
of Remote Sensing, 10(6), 989–1003. https://doi.org/10.1080/01431168908903939
Utami, W., Kuna, A., & Marini, M. (2023). Dampak Pembangunan Bandara Internasional Yogyakarta Terhadap
Perubahan Penggunaan Lahan. Jurnal Pembangunan Wilayah Dan Kota, 19(1), 105–117.
https://doi.org/10.14710/pwk.v19i1.37429
Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W. T. (2018). How much does multi-temporal Sentinel-2
data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation,
72(June), 122–130. https://doi.org/10.1016/j.jag.2018.06.007
Wibowo, R. A., & Harintaka. (2023). Pembuatan Model Prediksi Lahan Terbangun di Kabupaten Kulon Progo dengan
Citra Satelit Penginderaan Jauh. Geoid, 19(1), 18–27.
Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., & Zhang, L. (2020).
Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment,
241(February), 111716. https://doi.org/10.1016/j.rse.2020.111716
Zhang, T., Su, J., Xu, Z., Luo, Y., & Li, J. (2021). Sentinel-2 satellite imagery for urban land cover classification by
optimized random forest classifier. Applied Sciences (Switzerland), 11(2), 1–17.
https://doi.org/10.3390/app11020543
Zhou, W., Troy, A., & Grove, M. (2008). Object-based land cover classification and change analysis in the baltimore
metropolitan area using multitemporal high resolution remote sensing data. Sensors, 8(3), 1613–1636.
