Comparative Analysis Of Landsat 8 And Landsat 9 Satellite Image Data In Surface Temperature Estimation, NDVI and NDBI Using Goggle Earth Engine
DOI:
https://doi.org/10.12962/geoid.v20i2.8016Keywords:
Landsat8, Landsat9, LST, NDVI, NDBI, Google Earth EngineAbstract
The rapid urbanization in major cities like Jakarta significantly alters land cover, which in turn impacts environmental thermal conditions and ecological quality. This research aims to analyze the spatial and temporal dynamics of Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI) in DKI Jakarta during the 2023–2024 period using combined data from the Landsat 8 and 9 satellites. Cross-validation analysis shows a very high level of consistency between the sensors, validating the use of combined data for multi-temporal studies. Analysis methods include land cover classification, linear regression analysis, and temporal change analysis. The results indicate a clear Urban Heat Island (UHI) phenomenon, characterized by a strong positive correlation between LST and NDBI (R > 0.67) and a negative correlation between LST and NDVI (R ≈ -0.5). Temporal analysis indicates that thermal conditions in 2024 were generally lower than in 2023, and localized dynamics of land cover change were also identified. These findings affirm the fundamental relationship between land cover composition and the urban microclimate, and underscore the importance of vegetation in mitigating high temperatures in urban environment.
References
Danniswari, D., Honjo, T., & Furuya, K. (2020). Land Cover Change Impacts on Land Surface Temperature in Jakarta and Its Satellite Cities. IOP Conference Series: Earth and Environmental Science, 501(1). https://doi.org/10.1088/1755-1315/501/1/012031
Fatkhuroyan, & TrinahWati. (2018). Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product over Indonesian Maritime Continent. IOP Conference Series: Earth and Environmental Science, 187(1). https://doi.org/10.1088/1755-1315/187/1/012060
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Gunawan, R. A. R., Hadibasyir, H. Z., & Arijuddin, B. I. (2023). Analysis of the Impact of Residential Land Development on LST in Semarang City. Proceedings of the International Conference of Geography and Disaster Management (ICGDM 2022), 421–435. https://doi.org/10.2991/978-2-38476-066-4_27
Gusmiarti, N., Prasetyo, Y., & Bashit, N. (2022). Analisis Korelasi Land Surface Temperature (LST) dengan Penerapan Pembatasan Kegiatan Masyarakat (PKM) (Studi Kasus : Kawasan Sentra Pengasapan Ikan, Bandarharjo, Semarang). Elipsoida : Jurnal Geodesi Dan Geomatika, 5, 61–68. https://doi.org/10.14710/elipsoida.2022.16741
Hardianto, A., Dewi, P. U., Feriansyah, T., Sari, N. F. S., & Rifiana, N. S. (2021). Pemanfaatan Citra Landsat 8 Dalam Mengidentifikasi Nilai Indeks Kerapatan Vegetasi (NDVI) Tahun 2013 dan 2019 (Area Studi: Kota Bandar Lampung). Jurnal Geosains Dan Remote Sensing, 2(1), 8–15. https://doi.org/10.23960/jgrs.2021.v2i1.38
Jannah, G., & Bioresita, F. (2023). Pemantauan Land Surface Temperature (LST) dan Kaitannya dengan Tutupan Lahan (Studi Kasus: Kota Surabaya Tahun 2014-2022). Jurnal Teknik ITS, 12. https://doi.org/10.12962/j23373539.v12i2.122579
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristóbal, J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032
Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing, 10, 1509. https://doi.org/10.3390/rs10101509
Laksono, A., Saputri, A. A., Pratiwi, C. I. B., Arkan, M. Z., & Putri, R. F. (2020). Vegetation covers change and its impact on Barchan Dune morphology in Parangtritis Coast, Indonesia. E3S Web of Conferences, 200. https://doi.org/10.1051/e3sconf/202020002026
Li, Z.-L., Tang, B., Wu, H., Yan, G., Wan, Z., Trigo, I., & Sobrino, J. (2013). Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sensing of Environment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008
Masek, J., Wulder, M., Markham, B., McCorkel, J., Crawford, C., Storey, J., & Jenstrom, D. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. https://doi.org/10.1016/j.rse.2020.111968
Mashudi, M., & Faisol, A. (2022). Estimasi Suhu Udara Di Kabupaten Manokwari Melalui Pemanfaatan Citra Satelit Landsat 8. Jurnal Meteorologi Dan Geofisika, 23(1), 52. https://doi.org/10.31172/jmg.v23i1.753
Meng, X., & Cheng, J. (2018). Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor—Application to Landsat 8 TIRS10 Data. Remote Sensing, 10, 474. https://doi.org/10.3390/rs10030474
Mustafa, P. S. (2023). Tinjauan Literatur Analisis Uji R Berganda dan Uji Lanjut dalam Statistik Inferensial pada Penelitian Pendidikan Jasmani. Jurnal Ilmiah Wahana Pendidikan, 2023(5), 571–593. https://doi.org/10.5281/zenodo.7758162
Prayogo, L. (2021). Platform Google Earth Engine Untuk Pemetaan Suhu Permukaan Daratan Dari Data Series Modis. DOUBLECLICK Journal of Computer and Information Technology, 5, 25–31. https://doi.org/10.25273/doubleclick.v5i1.8604
Putu Aryastana, I Gede Yogi Adnyana Puspita Riana, Ilona Dwiyeni Nahak, I Wayan Wartana, & Ida Bagus Made Yatana. (2023). Analisis indeks vegetasi pada citra Landsat 8 untuk penentuan perubahan tutupan lahan di Kabupaten Badung, Provinsi Bali. PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa, 12(2), 127–136. https://doi.org/10.22225/pd.12.2.6370.127-136
Sampelan, D., Baihaqi, A., & Jaelani, L. M. (2024). Analyzing the Impact of Mandalika Special Economic Zone (SEZ) Development on Land Surface Temperature (LST) Using Landsat 8 Satellite Imagery. 2024 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 16–23. https://doi.org/10.1109/AGERS65212.2024.10932919
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170. https://doi.org/10.1016/J.ISPRSJPRS.2020.04.001
Tang, B., Shao, K., Li, Z.-L., Wu, H., & Tang, R. (2015). An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. International Journal of Remote Sensing, 36, 1–15. https://doi.org/10.1080/01431161.2015.1040132
USGS. (2021). Landsat 9 Data Users Handbook.
USGS. (2024). Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide.
USGS. (2025, September 5). How do I use a scale factor with Landsat Level-2 science products? https://www.usgs.gov/faqs/how-do-i-use-a-scale-factor-landsat-level-2-science-products
Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 64, Issue 4, pp. 335–344). https://doi.org/10.1016/j.isprsjprs.2009.03.007
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483. https://doi.org/10.1016/j.rse.2003.11.005
Xu, H., Ren, M., & Lin, M. (2024). Cross-comparison of Landsat-8 and Landsat-9 data: a three-level approach based on underfly images. GIScience and Remote Sensing, 61(1). https://doi.org/10.1080/15481603.2024.2318071
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing - INT J REMOTE SENS, 24, 583–594. https://doi.org/10.1080/01431160304987
