Analysis of Seasonal Patterns of Atmospheric Water Vapour and Rainfall in East Kalimantan and North Kalimantan Using the Lomb–Scargle Periodogram Method

Authors

  • Agus Ariyanto Meteorology Climatology and Geophysics Agency, Indonesia
  • Eko Yuli Handoko Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember Surabaya, Indonesia
  • Putra Maulida Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

DOI:

https://doi.org/10.12962/geoid.v21i1.8767

Keywords:

GNSS, LSP, PWV, Rainfall, Seasonal Pattern

Abstract

This study examines the seasonal trends of Precipitable Water Vapour (PWV) obtained from GNSS data (2021–2023) and decadal rainfall data from BMKG (2001–2020) in East and North Kalimantan, employing the Lomb–Scargle Periodogram (LSP) method. The findings indicate that PWV is mostly influenced by an equatorial semi-annual cycle (about 0.5 years), while precipitation typically adheres to a monsoonal annual pattern (around 1 year). The correlation between PWV and precipitation is not wholly linear, exhibiting significant local variability in coastal areas. The LSP approach is effective in identifying dominant frequencies, albeit it exhibits reduced sensitivity to non-stationary fluctuations in atmospheric signals.

References

Adhi Dermawan, A. A., Handoko, E. Y., & Maulida, P. (2023). An Estimation of Precipitable Water Vapour Around Surabaya City Using GIPSY-X. IOP Conference Series: Earth and Environmental Science, 1127(1), 12004. https://doi.org/10.1088/1755-1315/1127/1/012004

Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/https://doi.org/10.1002/joc.950

Baldysz, Z., Nykiel, G., Latos, B., Baranowski, D. B., & Figurski, M. (2021). Interannual Variability of the GNSS Precipitable Water Vapor in the Global Tropics. In Atmosphere (Vol. 12, Issue 12). https://doi.org/10.3390/atmos12121698

Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 97(D14). https://doi.org/10.1029/92jd01517

Chang, C.-P., Wang, Z., McBride, J., & Liu, C.-H. (2005). Annual Cycle of Southeast Asia—Maritime Continent Rainfall and the Asymmetric Monsoon Transition. Journal of Climate, 18(2), 287–301. https://doi.org/10.1175/JCLI-3257.1

Geng, J., Chen, X., Pan, Y., Mao, S., Li, C., Zhou, J., & Zhang, K. (2019). PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution. GPS Solutions, 23. https://doi.org/10.1007/s10291-019-0888-1

Geng, J., Ge, M., Yang, S., Zhang, K., Lin, J., Li, W., Mao, S., Pan, Y., & Zeng, J. (2023). PPP-AR III Manual. WuhanUniversity. https://pride.whu.edu.cn/ueditor/jsp/upload/file/20231124/1700793919577054879.pdf

Guo, Q., Wu, X., & Sang, W. (2018). Review of the Research Status and Progress of Ground-Based GNSS Meteorology. Iweg, 199–206. https://doi.org/10.5220/0007428101990206

Handoko, E. Y., Kurniawan, A., Maulida, P., & Cemara, N. A. (2021). Precipitation Water Vapour Variation in the East Java Region from Data CORS Using GIPSY. IOP Conference Series: Earth and Environmental Science, 936(1), 12001. https://doi.org/10.1088/1755-1315/936/1/012001

Hankansujarit, C., & Andrei, C. O. (2018). Atmospheric water estimation using GNSS precise point positioning method. Engineering Journal, 22(6), 37–45. https://doi.org/10.4186/ej.2018.22.6.37

Kelsey, V., Riley, S., & Minschwaner, K. (2022). Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations. Atmospheric Measurement Techniques, 15(5), 1563–1576. https://doi.org/10.5194/amt-15-1563-2022

Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349–360. https://doi.org/10.1007/s00190-017-1066-2

Li, F., Li, J., Liu, L., Huang, L., Zhou, L., & He, H. (2023). Machine Learning-Based Calibrated Model for Forecast Vienna Mapping Function 3 Zenith Wet Delay. In Remote Sensing (Vol. 15, Issue 19). https://doi.org/10.3390/rs15194824

Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39(2), 447–462. https://doi.org/10.1007/BF00648343

Masykur, M., Handoko, E. Y., & Susilo. (2021). Web-Based Online Post-Processing GNSS Service InaCORS BIG for Mapping Control Point Positioning for Channel or Road Design. IOP Conference Series: Earth and Environmental Science, 936(1), 12024. https://doi.org/10.1088/1755-1315/936/1/012024

Maulida, N. P., Ariska, M., Suhadi, S., & Akhsan, H. (2025). Rainfall Characteristics in Kalimantan Island During ENSO and IOD Phases: Insights from Composite Analysis. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 17(1 SE-Research Article), 88–100. https://doi.org/10.25077/jif.17.1.88-100.2025

Maulida, N. P., Landskron, D., & Böhm, J. (2020). Assessing the performance of Vienna Mapping Functions 3 for GNSS stations in Indonesia using Precise Point Positioning. Adv. Geosci., 50, 77–86. https://doi.org/10.5194/adgeo-50-77-2020

Mikoś, M., Kazmierski, K., Hadas, T., & Sośnica, K. (2023). Multi-GNSS PPP solutions with different handling of system-specific receiver clock parameters and inter-system biases. GPS Solutions, 27(3), 137. https://doi.org/10.1007/s10291-023-01474-w

Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., & Smale, D. (2016). The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmospheric Measurement Techniques, 9(1), 79–92. https://doi.org/10.5194/amt-9-79-2016

Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., & Businger, S. (1993). Sensing atmospheric water vapor with the global positioning system. Geophysical Research Letters, 20(23), 2631–2634. https://doi.org/10.1029/93GL02935

Scargle, J. (1983). Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263. https://doi.org/10.1086/160554

Trenberth, K. E., Fasullo, J. T., & Kiehl, J. (2009). Earth’s Global Energy Budget. Bulletin of the American Meteorological Society, 90(3), 311–324. https://doi.org/10.1175/2008BAMS2634.1

VanderPlas, J. T. (2018). Understanding the Lomb–Scargle Periodogram. The Astrophysical Journal Supplement Series, 236(1), 16. https://doi.org/10.3847/1538-4365/aab766

Vaquero-Martínez, J., & Antón, M. (2021). Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics. In Remote Sensing (Vol. 13, Issue 12). https://doi.org/10.3390/rs13122287

Yang, L., Gao, J., Zhu, D., Zheng, N., & Li, Z. (2020). Improved Zenith Tropospheric Delay Modeling Using the Piecewise Model of Atmospheric Refractivity. In Remote Sensing (Vol. 12, Issue 23). https://doi.org/10.3390/rs12233876.

Downloads

Published

2026-01-01

How to Cite

Agus Ariyanto, Eko Yuli Handoko, & Putra Maulida. (2026). Analysis of Seasonal Patterns of Atmospheric Water Vapour and Rainfall in East Kalimantan and North Kalimantan Using the Lomb–Scargle Periodogram Method. GEOID, 21(1), 38–46. https://doi.org/10.12962/geoid.v21i1.8767

Issue

Section

Articles