Identification of the Best Semivariogram Model for the Blending of In-Situ and ERA5-Land Air Temperature Data Using the Kriging with External Drift Technique
DOI:
https://doi.org/10.12962/geoid.v21i1.8768Keywords:
Air temperature, ERA5-Land, SemivariogramAbstract
Accurate air temperature monitoring is essential for understanding climate dynamics and microclimates, particularly in regions with diverse topography. The limited number of observation stations often results in data that do not fully represent actual conditions. To address this gap, combining in-situ measurements with ERA5-Land reanalysis presents a promising alternative, although ERA5-Land may still exhibit biases in mountainous or urban areas. This study applies Kriging with External Drift (KED) to improve temperature estimation, focusing on identifying the most suitable semivariogram model. Daily and monthly analyses were conducted, with performance evaluated using RMSE, MAE, and MSE. The results indicate that the Spherical model consistently performs best for average and maximum temperatures, while the Exponential model provides better estimates for minimum temperature at the daily scale, and the Linear model at the monthly scale. These findings demonstrate that KED can significantly enhance temperature estimation in areas with sparse observations, while also highlighting the most reliable semivariogram models for different temperature parameters.
References
Abbass, K., Qasim, M., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). “A review of the global climate change impacts, adaptation, and sustainable mitigation measures”. Environmental Science and Pollution Research International, 29, 42539 - 42559. https://doi.org/10.1007/s11356-022-19718-6.
Ainurrohmah, S., & Sudarti, D. S. (2022). “Analisis Perubahan Iklim dan Global Warming yang Terjadi sebagai Fase Kritis”. Jurnal Pendidikan Fisika dan Fisika Terapan (Vol. 8, Issue 1).
Aldrian, E., Karmini, M., & Budiman, D. B. (2011). “Adaptasi dan mitigasi perubahan iklim di Indonesia”. Pusat Perubahan Iklim dan Kualitas Udara, Kedeputian Bidang Klimatologi, Badan Meteorologi, Klimatologi, dan Geofisika.
Alfiandy, S., Rangga, I. A., & Permana, D. S. (2022). “Pola Peningkatan Suhu Udara Berdasarkan Data Bmkg Dan Era5 Di Provinsi Sulawesi Tengah”. Jurnal Analisis Kebijakan Kehutanan, 19(1), 63–70. https://doi.org/10.20886/jakk.2022.19.1.63-70
Benjamin Murphy, Roman Yurchak, & Sebastian Müller. (2024). GeoStat-Framework/PyKrige: v1.7.2 (v1.7.2). Zenodo. https://doi.org/10.5281/zenodo.11360184
Berrar, D. (2019). Cross-validation.
Bohling, G. (2005). “Introduction to geostatistics and variogram analysis”. Kansas geological survey, 1(10), 1-20.
Cao, B., Gruber, S., Zheng, D., & Li, X. (2020). “The ERA5-Land soil temperature bias in permafrost regions. Cryosphere”, 14(8), 2581–2595. https://doi.org/10.5194/tc-14-2581-2020
Carleton, T., & Hsiang, S. (2016). “Social and economic impacts of climate”. Science, 353. https://doi.org/10.1126/science.aad9837.
Chen, L., Wang, X., Cai, X., Yang, C., & Lu, X. (2021). “Seasonal Variations of Daytime Land Surface Temperature and Their Underlying Drivers over Wuhan, China”. Remote. Sens., 13, 323. https://doi.org/10.3390/rs13020323.
Chen L, Gao Y, Zhu D, Yuan Y, Liu Y (2019). ”Quantifying the scale effect in geospatial big data using semi-variograms”. PLOS ONE 14(11): e0225139. https://doi.org/10.1371/journal.pone.0225139
Choudhury, D., Ji, F., Nishant, N., & Di Virgilio, G. (2023). “Evaluation of ERA5-Simulated Temperature and Its Extremes for Australia”. Atmosphere, 14(6). https://doi.org/10.3390/atmos14060913
Copernicus Climate Change Service, ERA5-Land Hourly Data From 1950 to Present Available online (2022) https://cds.climate.copernicus.eu/doi/10.24381/cds.e2161bac
Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.
Camana, F., & Deutsch, C. (2020). The Nugget Effect. .
Duan, S. B., Li, Z. L., Li, H., Göttsche, F. M., Wu, H., Zhao, W., Leng, P., Zhang, X., & Coll, C. (2019). “Validation of Collection 6 MODIS land surface temperature product using in-situ measurements”. Remote Sensing of Environment, 225, 16–29. https://doi.org/10.1016/j.rse.2019.02.020
Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T. M., Wan Ibadullah, W. M., … Bin Hj Yussof, M. N. A. (2020). “Development of an Updated Global Land In-situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3”. Journal of Geophysical Research: Atmospheres, 125(16).https://doi.org/10.1029/2019JD032263
Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford university press.
Gregg, W. W., & Conkright, M. E. (2001). Global seasonal climatologies of ocean chlorophyll: “Blending in-situ and satellite data for the Coastal Zone Color Scanner era”. Journal of Geophysical Research: Oceans, 106(C2), 2499–2515. https://doi.org/10.1029/1999jc000028
Haberlandt, U. (2007). “Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event”. Journal of Hydrology, 332, 144-157. https://doi.org/10.1016/J.JHYDROL.2006.06.028.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). “The ERA5 global reanalysis. Quarterly journal of the royal meteorological society”, 146(730), 1999-2049.
Hendarwati, E. K., Lepong, P., & Suyitno, S. (2023). “Pemilihan Semivariogram Terbaik Berdasarkan Root Mean Square Error (RMSE) pada Data Spasial Eksplorasi Emas Awak Mas”. GEOSAINS KUTAI BASIN, 6(1), 47-52.
Hidayati, I. N., & Suryanto, S. (2015). “Pengaruh perubahan iklim terhadap produksi pertanian dan strategi adaptasi pada lahan rawan kekeringan”. Jurnal Ekonomi & Studi Pembangunan, 42-52.
Hodson, T. O. (2022). “Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions”, 2022, 1-10. https://doi.org/10.5194/gmd-15-5481-2022
Huang, X., Han, S., & Shi, C. (2022). “Evaluation of Three Air Temperature Reanalysis Datasets in the Alpine Region of the Qinghai–Tibet Plateau”. Remote Sensing, 14(18). https://doi.org/10.3390/rs14184447
Hudson, G., & Wackernagel, H. (1994). “Mapping temperature using kriging with external drift: Theory and an example from scotland”. International Journal of Climatology, 14, 77-91. https://doi.org/10.1002/JOC.3370140107.
Jurusan, P., Pertambangan, T., Teknik, A., Nasional, P., & Ringkasan, B. (2018). “Efektivitas Ordinary Cokriging Dan Kriging Untuk Karakterisasi Potensi Manifestasi Panas Bumi Ishaq”. In Print) Jurnal INTEKNA (Vol. 18, Issue 2). Online. http://ejurnal.poliban.ac.id/index.php/intekna/issue/archive
Ly, S., Charles, C., & Dégre, A. (2011). “Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium”. Hydrology and Earth System Sciences, 15, 2259-2274. https://doi.org/10.5194/HESS-15-2259-2011.
Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). “Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest”. Science, 344(6183), 516–519. https://doi.org/10.1126/science.1251423
Laporan IPCC, (2021) https://unfccc.int/topics/science/workstreams/cooperation-with-the-ipcc/the-sixth-assessment-report-of-the-ipcc
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J. N. (2021). “ERA5-Land: A state-of-the-art global reanalysis dataset for land applications”. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
Mazzella, A., & Mazzella, A. (2013). “The importance of the model choice for experimental semivariogram modeling and its consequence in evaluation process”. Journal of Engineering, 2013(1), 960105. https://doi.org/10.1155/2013/960105
Oliver, M., & Webster, R. (2014). “A tutorial guide to geostatistics: Computing and modelling variograms and kriging”. Catena, 113, 56-69. https://doi.org/10.1016/J.CATENA.2013.09.006
Oliver, M. A., & Webster, R. (2015). ”Basic steps in geostatistics: the variogram and kriging” (Vol. 106). Cham, Switzerland: Springer International Publishing.
Pawitan, H., & Sophaheluwakan, A. (n.d.).” Validasi Dan Koreksi Data Satelit Trmm Pada Tiga Pola Hujan Di Indonesia Validation And Correction Of Trmm Satellite Data On Three Rainfall Patterns In Indonesia.
Prasetyo, S., Hidayat, U., Haryanto, Y. D., & Riama, N. F. (2021). “Variasi dan Trend Suhu Udara Permukaan di Pulau Jawa Tahun 1990-2019”. Jurnal Geografi : Media Informasi Pengembangan Dan Profesi Kegeografian, 18(1), 60–68. https://doi.org/10.15294/jg.v18i1.27622
Rozalia, G., Yasin, H., & Ispriyanti, D. (2016). “Penerapan Metode Ordinary Kriging Pada Pendugaan Kadar No 2 Di Udara (Studi Kasus: Pencemaran Udara di Kota Semarang)”. JURNAL GAUSSIAN, 5(1), 113–121. http://ejournal-s1.undip.ac.id/index.php/gaussian
Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). “Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review”. In International Agrophysics (Vol. 32, Issue 2, pp. 287–302). Walter de Gruyter GmbH. https://doi.org/10.1515/intag-2017-0005
Varentsov, M., Esau, I., & Wolf, T. (2020). “High-Resolution Temperature Mapping by Geostatistical Kriging with External Drift from Large-Eddy Simulations”. Monthly Weather Review. https://doi.org/10.1175/mwr-d-19-0196.1.
Velasco-Forero, C. A., Sempere-Torres, D., Cassiraga, E. F., & Jaime Gómez-Hernández, J. (2009). “A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data”. Advances in Water Resources, 32(7), 986–1002. https://doi.org/10.1016/j.advwatres.2008.10.004
Tang, W., Zhang, L., & Banerjee, S. (2021). “On identifiability and consistency of the nugget in Gaussian spatial process models”. Journal of the Royal Statistical Society Series B: Statistical Methodology, 83(5), 1044-1070.
Yang, W., Wang, Y., Webb, A., Li, Z., Tian, X., Han, Z., Wang, S., & Yu, P. (2018). “Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China”. The Science of the total environment, 612, 1007-1017 . https://doi.org/10.1016/j.scitotenv.2017.08.180.
Zhao, P., & He, Z. (2022). “A First Evaluation of ERA5-Land Reanalysis Temperature Product Over the Chinese Qilian Mountains”. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.907730
Zhao, Q., Guo, Y., Ye, T., Gasparrini, A., Tong, S., Overcenco, A., Urban, A., Schneider, A., Entezari, A., Vicedo-Cabrera, A. M., Zanobetti, A., Analitis, A., Zeka, A., Tobias, A., Nunes, B., Alahmad, B., Armstrong, B., Forsberg, B., Pan, S. C., … Li, S. (2021). “Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study”. The Lancet Planetary Health, 5(7), e415–e425. https://doi.org/10.1016/S2542-5196(21)00081-4
Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., Watanabe, H., & Mochida, A. (2020).” Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze”. Sustainable Cities and Society, 55, 102060. https://doi.org/10.1016/j.scs.2020.102060.
