Simulation of Tidal Inundation along the Northern Coast of Central Java (Pantura) using GISBased Analysis
DOI:
https://doi.org/10.12962/geoid.v20i2.8772Kata Kunci:
Tidal inundation, Sea Level Rise, PanturaAbstrak
The northern coast of Java Island (locally known as Pantura) is a strategically important area, particularly in the distribution sector. However, its topographical characteristics and proximity to the Java Sea make it vulnerable to the threat of tidal inundation. Moreover, environmental factors such as sea level rise, land subsidence, and coastal abrasion further exacerbate its susceptibility to flooding. The phenomenon of tidal inundation, locally referred to as rob, occurs when seawater overflows onto low-lying coastal areas during high tides. The rob phenomenon significantly impacts the socio-economic conditions of coastal communities, disrupting daily activities and damaging critical infrastructure. This study simulates potential inundation using a uniform Highest High Water Level (HHWL) scenario of 1.2 meters to estimate flood depth and spatial extent. The modeling approach applies a consistent water surface elevation across the study area, without considering storm surge and hydrodynamics, resulting in generalized inundation patterns. The methodology follows the Technical Guidelines for Disaster Risk Assessment issued by Indonesia’s National Disaster Management Agency (BNPB) and integrates various spatial datasets, including land cover data from Sentinel Land Cover by ESRI, topographic data from the Shuttle Radar Topography Mission (SRTM), Digital Elevation Model (DEM), and maximum tidal height data processed using the Admiralty method. The analysis shows that, assuming a Highest High Water Level of 1.2 meters, Kendal Regency, Brebes Regency, and Semarang City are the most affected areas in terms of both flood depth and extent. The inundated areas are estimated at 3,744.91 hectares in Kendal Regency, 2,880.58 hectares in Brebes Regency, and 513.17 hectares in Semarang City. This situation could become more severe in the event of storm surge, extreme weather, or climate anomalies if timely and effective mitigation measures are not implemented. These findings are expected to provide a strong foundation for policymakers to formulate targeted, data-driven, and sustainable mitigation strategies to protect communities and infrastructure along Java’s northern coastal region.
Referensi
Andreas, H., Abidin, H. Z., Gumilar, I., Sidiq, T. P., & Yuwono, B. (2017). Adaptation and mitigation of land subsidence in Semarang. 060005. https://doi.org/10.1063/1.4987088
Andreas, H., Usriyah, Zainal Abidin, H., & Anggreni Sarsito, D. (2017). Tidal inundation (“Rob”) investigation using time series of high resolution satellite image data and from institu measurements along northern coast of Java (Pantura). IOP Conference Series: Earth and Environmental Science, 71, 012005. https://doi.org/10.1088/1755-1315/71/1/012005
Berryman, K. (2005). Review of Tsunami Hazard and Risk in New Zealand.
de Man, H., van den Berg, H. H. J. L., Leenen, E. J. T. M., Schijven, J. F., Schets, F. M., van der Vliet, J. C., van Knapen, F., & de Roda Husman, A. M. (2014). Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Research, 48, 90–99. https://doi.org/10.1016/j.watres.2013.09.022
Erban, L. E., Gorelick, S. M., & Zebker, H. A. (2014). Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9(8), 084010. https://doi.org/10.1088/1748-9326/9/8/084010
Glen, N. C. (2015). The Admiralty Method of Tidal Prediction. N. P. 159. The International Hydrographic Review, 54(1). https://journals.lib.unb.ca/index.php/ihr/article/view/23705
Griggs, G., & Reguero, B. G. (2021). Coastal Adaptation to Climate Change and Sea-Level Rise. Water, 13(16), 2151. https://doi.org/10.3390/w13162151
Hakim, B. A., Kustiyanto, E., Cholisoh, E., Airawati, M. N., Wibawa, B., Susilo, Y. S., & Asharo, R. K. (2022). Assessing Environmental Physics: Tidal Flood Impact with Multidiscipline Approach (Case Study Coastal Cities Semarang Indonesia). Journal of Physics: Conference Series, 2377(1), 012059. https://doi.org/10.1088/1742-6596/2377/1/012059
Hamlington, B. D., Bellas-Manley, A., Willis, J. K., Fournier, S., Vinogradova, N., Nerem, R. S., Piecuch, C. G., Thompson, P. R., & Kopp, R. (2024). The rate of global sea level rise doubled during the past three decades. Communications Earth & Environment, 5(1), 601. https://doi.org/10.1038/s43247-024-01761-5
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896
Mehvar, S., Filatova, T., Syukri, I., Dastgheib, A., & Ranasinghe, R. (2018). Developing a framework to quantify potential Sea level rise-driven environmental losses: A case study in Semarang coastal area, Indonesia. Environmental Science & Policy, 89, 216–230. https://doi.org/10.1016/j.envsci.2018.06.019
Muktiali, M., Sudharto Hadi, P., Purnaweni, H., & Mussadun, M. (2023). The Impact of Flood Disaster Risk on the Welfare of the Coastal Communities of Semarang City. IOP Conference Series: Earth and Environmental Science, 1165(1), 012010. https://doi.org/10.1088/1755-1315/1165/1/012010
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z
Nirwansyah, A. W., & Suwarsito. (2020). Primary Valuation of Coastal Flood Impact to Fish Farming in Brebes, Central Java. Journal of Physics: Conference Series, 1464(1), 012040. https://doi.org/10.1088/1742-6596/1464/1/012040
Sidiq, T. P., Adiwijaya, R. F., Nugroho, E. O., Gumilar, I., & Abidin, H. Z. (2023). Long term subsidence rate in Pekalongan city observed by SAR Interferometry. IOP Conference Series: Earth and Environmental Science, 1276(1), 012014. https://doi.org/10.1088/1755-1315/1276/1/012014
Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7(1), 1399. https://doi.org/10.1038/s41598-017-01362-7
Widada, S., Ismanto, A., Priambodo, I. B., & Siagian, H. (2022). Perubahan Garis Pantai dan Dampaknya Terhadap Banjir Rob di Kecamatan Pekalongan Utara, Kota Pekalongan, Privinsi Jawa Tengah. Jurnal Kelautan Tropis, 25(1), 121–130. https://doi.org/10.14710/jkt.v25i1.13843
Widada, S., Zainuri, M., Yulianto, G., Satriadi, A., Jati Wijaya, Y., & Helmi, M. (2020). Mitigation of floodwaters inundation due to land subsidence in the coastal area of Semarang City. IOP Conference Series: Earth and Environmental Science, 530(1), 012006. https://doi.org/10.1088/1755-1315/530/1/012006
Wisnu, B., Deputi, W., Sistem, B., Strategi, D., Raditya, B., Direktur, J., Risiko, P., Bnpb, B., Panjaitan, B. S. P., Sub-Direktorat, K., Bnpb, P., Robi, M., Kepala, A., Mitigasi, S.-D., Standarisasi, D., & Penulis, B. (2018).
MODUL TEKNIS PENYUSUNAN KAJIAN RISIKO BENCANA TSUNAMI.
