Perbandingan Metode Regresi Ridge dan Jackknife Ridge Regression pada Data Tingkat Pengangguran Terbuka

Authors

  • Agita Andini University Bengkulu
  • Etis Sunandi University Bengkulu
  • Pepi Novianti University Bengkulu
  • Idhia Sriliana University Bengkulu
  • Winalia Agwil University Bengkulu

DOI:

https://doi.org/10.12962/limits.v22i1.3374

Keywords:

Regression Analysis, Multicolinearity, Unemployment

Abstract

Regression analysis is a statistical technique used to analyze the relationship between predictor and response variables. One of the parameter estimation methods commonly used for regression analysis is Ordinary Least Squares. This method produces unbiased and efficient estimates, known as BLUE (Best Linear Unbiased Estimator). In multiple linear regression analysis involving more than one predictor variable, it is essential to meet model assumptions such as the absence of multicollinearity. Multicollinearity is a condition where predictor variables have a high correlation, which can disrupt the stability of parameter estimates. Therefore, Ridge Regression and Jackknife Ridge Regression methods were used to address this issue. Both methods modify the least squares method by adding a bias constant value. This research uses the Open Unemployment Rate (OUR) data in Sumatra in 2022, and 3 predictor variables exhibit multicollinearity. Based on the analysis comparing the Mean Squared Error (MSE) values, the Jackknife Ridge Regression method yields the smallest MSE value, 0.004. Both methods are effective in addressing multicollinearity and identifying significant predictor variables for OUR in Sumatra Island, namely the Human Development Index (HDI), average years of schooling, number of poor people, Life Expectancy (LE), population density and inactive population

References

M. H. Kutner, C. J. Nachtsheim, J. Neter, W. Li. Applied Linear Statistical Models. Vol. 29. Fifth Edit. New York: Mc Graw Hill, 2005.

D. C. Montgomery, E. A. Peck, G. Vining. Introduction to Linear Regression Analysis. Vol. 11. Fift Editi. New York, 2012.

T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Vol. 26. Second Edi. New York, 2009.

S. Noora. “Detecting Multicollinearity in Regression Analysis.” American Journal of Applied Mathematics and Statistics 8(2):39–42. doi: 10.12691/ajams-8-2-1. 2020.

Tinungki, G. M. “Orthogonal Iteration Process of Determining K Value on Estimator of Jackknife Ridge Regression Parameter.” Journal of Physics: Conference Series 1341(9). doi: 10.1088/1742-6596/1341/9/092001. 2019.

F. Adji. “Comparison of Parameter Estimator Efficiency Levels of Path Analysis with Bootstrap and Jack Knife (Delete-5) Resampling Methods on Simulation Data.” Jurnal Matematika, Statistika Dan Komputasi 16(3):353. doi: 10.20956/jmsk.v16i3.9723. 2020.

A. Nita, K. Dadan, and N. N. Debataraja. "Metode Generalized Ridge Regression Dalam Mengatasi Multikolinearitas." Buletin Ilmiah Matematika, Statistika Dan Terapannya 8(4):679–86. doi: 10.26418/bbimst.v8i4.35879. 2019.

H. Astri, and L. Wachidah. “Metode Regresi Elastic-Net Untuk Mengatasi Masalah Multikolinearitas Pada Kasus Tingkat Pengangguran Terbuka Di Provinsi Jawa Barat.” Bandung Conference Series: Statistics 2(2):459–65. doi: 10.29313/bcss.v2i2.4722. 2022.

Statistik, Badan Pusat. 2023. “Keadaan Angkatan Kerja Provinsi.” 260.

Destiyani, Eka, Rita Rahmawati, and Suparti Suparti. “Pemodelan Regresi Ridge Robust-Mm Dalam Penanganan Multikolinieritas Dan Pencilan (Studi Kasus:Faktor-Faktor Yang Mempengaruhi AKB Di Jawa Tengah Tahun 2017)" Jurnal Gaussian 8(1):24–34. 2019.

Damodar N. Gujarati, Dawn C. Porte. Basic Econometrics. Fiftth Edition. 2013.

Ali, Rahmatia G., and Jaka Nugraha. “Penerapan Metode Regresi Ridge Dalam Mengatasi Masalah Multikolinearitas Pada Kasus Indeks Pembangunan Manusia Di Indonesia Tahun 2017.” Prosiding Sendika 5(2):239–48. 2019.

A. A. Huda, D. Ispriyanti, and A. Hoyyi. “Metode Modified Jackknife Ridge Regression Dalam Penanganan Multikolinieritas (Studi Kasus Indeks Pembangunan Manusia Di Jawa Tengah).” Jurnal Gaussian 10(1):104–13. doi: 10.14710/j.gauss.v10i1.29922. 2021

Downloads

Published

2025-03-26

How to Cite

Andini, A. ., Sunandi, E. ., Novianti, P. ., Sriliana, I., & Agwil, W. . (2025). Perbandingan Metode Regresi Ridge dan Jackknife Ridge Regression pada Data Tingkat Pengangguran Terbuka. Limits: Journal of Mathematics and Its Applications, 22(1), 77–84. https://doi.org/10.12962/limits.v22i1.3374