Perbandingan Kinerja Hybrid Classification SVM-RF dan SVM-NN Terhadap Faktor Risiko Anemia Ibu Hamil di Indonesia dengan Pendekatan Clustering K-Means
DOI:
https://doi.org/10.12962/limits.v22i3.5737Kata Kunci:
Hybrid, Classification, SVM-RF, SVM-NN, AnemiaAbstrak
Classification is one of the most researched topics by researchers from the field of machine learning and data mining. Machine learning methods that are often used include Support Vector Machine (SVM), Random Forest (RF) and Neural Network (NN). However, SVM does not always provide good accuracy. For example, when applied to highly imbalanced data, SVM will experience challenges. In addition, there is no single best method that can be applied to all classification problems. Currently, hybrid method approaches for data mining applications are becoming increasingly popular such as hybrid SVM-RF, SVM-NN and KMeans-SVM methods. In this study, a hybrid method of SVM-RF and SVM-NN was used to classify risk factors for anemia in pregnant women in Indonesia with a K-Means approach to cluster data misclassified by SVM. The results showed that the hybrid method can improve the performance of the SVM model. Hybrid SVM-RF provides a higher evaluation metric value compared to SVM-NN. The four evaluation metrics used, namely accuracy, balanced accuracy, sensitivity and specificity in SVM-RF are worth 0,989; 0,989; 0,988; and 0,989, respectively. The variables that contribute generally based on SHAP Global to the classification of risk factors for anemia in pregnant women in order are Age, Fe Tablet, Working Status, Education, Nutritional Status and ANC.
Unduhan
Referensi
A. A. Soofi and A. Awan, “Classification Techniques in Machine Learning: Applications and Issues,” Journal of Basic & Applied Sciences, vol. 13, pp. 459–465, 2017.
F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, and J. Akinjobi, “Supervised Machine Learning Algorithms: Classification and Comparison,” International Journal of Computer Trends and Technology, vol. 48, no. 3, pp. 128–138, 2017, doi: 10.14445/22312803/ijctt-v48p126.
J. Dj Novakovi, A. Veljovi, S. S. Ili, Zeljko Papi, and M. Tomovi, “Evaluation of Classification Models in Machine Learning,” Theory and Applications of Mathematics & Computer Science, vol. 7, no. 1, pp. 39–46, 2017.
S. Naeem, A. Ali, S. Anam, and M. M. Ahmed, “An Unsupervised Machine Learning Algorithms: Comprehensive Review,” International Journal of Computing and Digital Systems, vol. 13, no. 1, pp. 911–921, 2023, doi: 10.12785/ijcds/130172.
B. Mahesh, “Machine Learning Algorithms - A Review,” International Journal of Science and Research (IJSR), vol. 9, no. 1, pp. 381–386, 2020, doi: 10.21275/ART20203995.
M. Minghui and Z. Chuanfeng, “Application of Support Vector Machines to a Small-Sample Prediction,” Advances in Petroleum Exploration and Development, vol. 10, no. 2, pp. 72–75, 2015, doi: 10.3968/7830.
B. Raj S., S. L. Gibson Moses, G. Chinnadurai, J. V. Anand, V. Janakiraman, and P. Anand, “Support Vector Machine for Image Classification,” Journal of the Asiatic Society of Mumbai, vol. 97, no. 4, pp. 1–10, 2023, [Online]. Available: https://www.researchgate.net/publication/371492398
S. Annisa, A. Saefuddin, and Erfiani, “Blood Glucose Levels of Non Invasive Tool Using Support Vector Machine on Multi-Class Imbalanced Data,” Int J Sci Eng Res, vol. 9, no. 11, pp. 1649–1652, 2018.
Y. D. Evitasari, W. J. Pranoto, and N. A. Verdikha, “Evaluasi Support Vector Machine Dengan Optimasi Metode Genetic Algorithm Pada Klasifikasi Banjir Kota Samarinda,” Jurnal Sains Komputer dan Teknologi Informasi, vol. 6, no. 1, pp. 49–53, 2023, doi: 10.33084/jsakti.v6i1.5462.
S. Rezvani, F. Pourpanah, C. P. Lim, and Q. M. J. Wu, “Methods for class-imbalanced learning with support vector machines: a review and an empirical evaluation,” Soft comput, 2024, doi: 10.1007/s00500-024-09931-5.
R. Guido, S. Ferrisi, D. Lofaro, and D. Conforti, “An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review,” Information (Switzerland), vol. 15, no. 4, 2024, doi: 10.3390/info15040235.
L. A. Demidova, I. A. Klyueva, and A. N. Pylkin, “Hybrid approach to improving the results of the SVM classification using the random forest algorithm,” Procedia Comput Sci, vol. 150, pp. 455–461, 2019, doi: 10.1016/j.procs.2019.02.077.
R. Li, H. N. Wang, H. He, Y. M. Cui, and Z. Le Du, “Support vector machine combined with K-nearest neighbors for solar flare forecasting,” Chinese Journal of Astronomy and Astrophysics, vol. 7, no. 3, pp. 441–447, 2007, doi: 10.1088/1009-9271/7/3/15.
G. W. Cha, H. J. Moon, and Y. C. Kim, “Comparison of random forest and gradient boosting machine models for predicting demolition waste based on small datasets and categorical variables,” Int J Environ Res Public Health, vol. 18, no. 16, Aug. 2021, doi: 10.3390/ijerph18168530.
P. Nanglia, S. Kumar, A. N. Mahajan, P. Singh, and D. Rathee, “A hybrid algorithm for lung cancer classification using SVM and Neural Networks,” ICT Express, vol. 7, no. 3, pp. 335–341, 2021, doi: 10.1016/j.icte.2020.06.007.
C. Y. Ku, C. Y. Liu, Y. J. Chiu, and W. Da Chen, “Deep Neural Networks with Spacetime RBF for Solving Forward and Inverse Problems in the Diffusion Process,” Mathematics, vol. 12, no. 9, 2024, doi: 10.3390/math12091407.
B. Debska and B. Guzowska-Swider, “Application of artificial neural network in food classification,” Anal Chim Acta, vol. 705, no. 1–2, pp. 283–291, 2011, doi: 10.1016/j.aca.2011.06.033.
R. Kumar, G. Ganapathy, and J.-J. Kang, “A Hybrid Mod K-Means Clustering with Mod SVM Algorithm to Enhance the Cancer Prediction,” International Journal of Internet, Broadcasting and Communication, vol. 13, no. 2, pp. 231–243, 2021, [Online]. Available: http://dx.doi.org/10.7236/IJIBC.2021.13.2.231
Y. P. Raykov, A. Boukouvalas, F. Baig, and M. A. Little, “What to do when K-means clustering fails: A simple yet principled alternative algorithm,” PLoS One, vol. 11, no. 9, pp. 1–28, 2016, doi: 10.1371/journal.pone.0162259.
Kemenkes RI, Buku Saku Pencegahan Anemia Pada Ibu Hamil Dan Remaja Putri, vol. 5, no. 4. 2023. [Online]. Available: http://dx.doi.org/10.1016/j.snb.2010.05.051
Kemenkes, Laporan Riskesdas 2018 Nasional.pdf. 2018.
L. A. Demidova, "Two-stage hybrid data classifiers based on svm and knn algorithms," Symmetry (Basel), vol. 13, no. 4, 2021, doi: 10.3390/sym13040615.
Y. Y. Colin Campbell, Learning with Support Vector Machines (Synthesis Lectures on Artificial Intelligence and Machine Learning). 2011.
X. Wang and P. M. Pardalos, “A Survey of Support Vector Machines with Uncertainties,” Annals of Data Science, vol. 1, no. 3–4, pp. 293–309, 2014, doi: 10.1007/s40745-014-0022-8.
B. Scholkopf and A. J. Smola, (book)Learning with Kernels, vol. 53, no. 9. London, England: The MIT Press, 2002.
K. I. Sundus, B. H. Hammo, M. B. Al-Zoubi, and A. Al-Omari, “Solving the multicollinearity problem to improve the stability of machine learning algorithms applied to a fully annotated breast cancer dataset,” Inform Med Unlocked, vol. 33, no. September, p. 101088, 2022, doi: 10.1016/j.imu.2022.101088.
F. Bolikulov, R. Nasimov, A. Rashidov, F. Akhmedov, and Y. I. Cho, “Effective Methods of Categorical Data Encoding for Artificial Intelligence Algorithms,” Mathematics, vol. 12, no. 16, 2024, doi: 10.3390/math12162553.
G. K. Dewi, I. Istianah, and S. Septiani, “Analisis Risiko Anemia Pada Ibu Hamil,” Jurnal Ilmiah Kesehatan (JIKA), vol. 4, no. 1, pp. 67–80, 2022, doi: 10.36590/jika.v4i1.223.
I. Tanziha, M. R. M. Damanik, L. J. Utama, and R. Rosmiati, “Faktor Risiko Anemia Ibu Hamil Di Indonesia,” Jurnal Gizi dan Pangan, vol. 11, no. 2, pp. 143–152, 2016, doi: 10.25182/jgp.2016.11.2.%p.
G. S. Yulfani Putri, S. Sulistiawati, and M. A. Cahya Laksana, “Analisis faktor-faktor risiko anemia pada ibu hamil di Kabupaten Gresik tahun 2021,” Jurnal Riset Kebidanan Indonesia, vol. 6, no. 2, pp. 119–129, 2023, doi: 10.32536/jrki.v6i2.220.



