Tinjauan Pustaka: Pemodelan Spasial Suhu Udara Berbasis Machine Learning dengan Integrasi LST, Albedo, dan Data Observasi Stasiun Cuaca
Main Article Content
Abstract
Suhu udara (Ta) merupakan indikator iklim penting yang berperan dalam kajian lingkungan, kesehatan, dan perencanaan wilayah. Keterbatasan stasiun cuaca menjadikan variasi spasial Ta sulit dipetakan secara detail, terutama di wilayah dengan topografi kompleks. Kajian ini menyajikan systematic literature review mengenai pemodelan spasial Ta berbasis machine learning (ML) dengan integrasi data suhu permukaan darat (Land Surface Temperature/LST), Albedo, dan observasi stasiun cuaca. Pencarian pustaka dilakukan menggunakan perangkat Publish or Perish yang terhubung ke Google Scholar untuk periode 2016–2025. Dari 1.000 publikasi yang diperoleh, hanya 8 artikel yang memenuhi kriteria inklusi dan relevan dianalisis lebih lanjut. Hasil telaah menunjukkan bahwa LST merupakan variabel utama yang digunakan dalam seluruh studi, dengan dukungan variabel tambahan seperti Albedo, NDVI, DEM, radiasi matahari, dan faktor meteorologi. Metode ML yang paling dominan adalah Random Forest (RF), disusul Gradient Boosting, Support Vector Regression (SVR), Cubist Regression, serta Multiple Linear Regression (MLR) sebagai pembanding. RF dan Gradient Boosting banyak diterapkan karena akurasinya tinggi dalam menangani data heterogen, sementara SVR efektif untuk regresi nonlinier, dan Cubist Regression terbukti stabil di wilayah bertopografi ekstrem. Secara umum, integrasi data satelit dengan pengamatan darat menghasilkan model dengan performa tinggi (R2 > 0,9 dan RMSE sekitar 1–2 °C). Kajian ini menegaskan bahwa pendekatan ML berbasis penginderaan jauh memiliki potensi besar untuk meningkatkan pemahaman dan pemodelan Ta, sekaligus membuka peluang penelitian lanjutan di wilayah dengan dinamika lingkungan yang beragam.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
L. Alonso dan F. Renard, "A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models," Remote Sens (Basel), vol. 12, no. 15, hlm. 2434, Jul 2020, doi: 10.3390/rs12152434.
G. F. Garuma, "Tropical surface urban heat islands in east Africa," Sci Rep, vol. 13, no. 1, Des 2023, doi: 10.1038/s41598-023-31678-6.
A. K. Kagawa-Viviani dan T. W. Giambelluca, "Spatial Patterns and Trends in Surface Air Temperatures and Implied Changes in Atmospheric Moisture Across the Hawaiian Islands, 1905-2017," Journal of Geophysical Research: Atmospheres, vol. 125, no. 2, Jan 2020, doi: 10.1029/2019JD031571.
M. Santamouris, "Cooling the cities - A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments," Solar Energy, vol. 103, hlm. 682-703, Mei 2014, doi: 10.1016/j.solener.2012.07.003.
A. Dwivedi, "Macro- and micro-level studies using Urban Heat Islands to simulate effects of greening, building materials and other mitigating factors in Mumbai city," Archit Sci Rev, vol. 62, no. 2, hlm. 126-144, Mar 2019, doi: 10.1080/00038628.2019.1578193.
A. M. M. Irfeey, H.-W. Chau, M. M. F. Sumaiya, C. Y. Wai, N. Muttil, dan E. Jamei, "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, vol. 15, no. 14, hlm. 10767, Jul 2023, doi: 10.3390/su151410767.
M. Ranagalage dkk., "Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka," ISPRS Int J Geoinf, vol. 9, no. 7, hlm. 461, Jul 2020, doi: 10.3390/ijgi9070461.
J. Chung, Y. Lee, W. Jang, S. Lee, dan S. Kim, "Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves," Remote Sens (Basel), vol. 12, no. 19, hlm. 3231, Okt 2020, doi: 10.3390/rs12193231.
M. Otgonbayar, C. Atzberger, M. Mattiuzzi, dan A. Erdenedalai, "Estimation of Climatologies of Average Monthly Air Temperature over Mongolia Using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques," Remote Sens (Basel), vol. 11, no. 21, hlm. 2588, Nov 2019, doi: 10.3390/rs11212588.
J. Hofierka, M. Gallay, K. Onacillova, dan J. Hofierka, "Physically-based land surface temperature modeling in urban areas using a 3-D city model and multispectral satellite data," Urban Clim, vol. 31, hlm. 100566, Mar 2020, doi: 10.1016/j.uclim.2019.100566.
R. Gupta, M. Sharma, G. Singh, dan R. K. Joshi, "Characterizing urban growth and land surface temperature in the western himalayan cities of India using remote sensing and spatial metrics," Front Environ Sci, vol. 11, Jan 2023, doi: 10.3389/fenvs.2023.1122935.
C. Wang, X. Bi, Q. Luan, dan Z. Li, "Estimation of Daily and Instantaneous Near-Surface Air Temperature from MODIS Data Using Machine Learning Methods in the Jingjinji Area of China," Remote Sens (Basel), vol. 14, no. 8, hlm. 1916, Apr 2022, doi: 10.3390/rs14081916.
M. Karlson, M. Ostwald, H. Reese, J. Sanou, B. Tankoano, dan E. Mattsson, "Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest," Remote Sens (Basel), vol. 7, no. 8, hlm. 10017-10041, Agu 2015, doi: 10.3390/rs70810017.
T. McCandless dkk., "Machine Learning for Improving Surface-Layer-Flux Estimates," Boundary Layer Meteorol, vol. 185, no. 2, hlm. 199-228, Nov 2022, doi: 10.1007/s10546-022-00727-4.
S. Ullah, X. Qiao, dan M. Abbas, "Addressing the impact of land use land cover changes on land surface temperature using machine learning algorithms," Sci Rep, vol. 14, no. 1, hlm. 18746, Agu 2024, doi: 10.1038/s41598-024-68492-7.
D. S. Roy, "Forecasting The Air Temperature at a Weather Station Using Deep Neural Networks," Procedia Comput Sci, vol. 178, hlm. 38-46, 2020, doi: 10.1016/j.procs.2020.11.005.
T. McCandless dkk., "Machine Learning for Improving Surface-Layer-Flux Estimates," Boundary Layer Meteorol, vol. 185, no. 2, hlm. 199-228, Nov 2022, doi: 10.1007/s10546-022-00727-4.
A. K. Kagawa-Viviani dan T. W. Giambelluca, "Spatial Patterns and Trends in Surface Air Temperatures and Implied Changes in Atmospheric Moisture Across the Hawaiian Islands, 1905-2017," Journal of Geophysical Research: Atmospheres, vol. 125, no. 2, Jan 2020, doi: 10.1029/2019JD031571.
D. Leutwyler dan C. Hohenegger, "Weak cooling of the troposphere by tropical islands in simulations of the radiative-convective equilibrium," Quarterly Journal of the Royal Meteorological Society, vol. 147, no. 736, hlm. 1788-1800, Apr 2021, doi: 10.1002/qj.3995.
R. S. dos Santos, "Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data," International Journal of Applied Earth Observation and Geoinformation, vol. 88, hlm. 102066, Jun 2020, doi: 10.1016/j.jag.2020.102066.
L. Zeng dkk., "8-Day and Daily Maximum and Minimum Air Temperature Estimation via Machine Learning Method on a Climate Zone to Global Scale," Remote Sens (Basel), vol. 13, no. 12, hlm. 2355, Jun 2021, doi: 10.3390/rs13122355.
Y. Xu, A. Knudby, Y. Shen, dan Y. Liu, "Mapping monthly air temperature in the Tibetan Plateau from MODIS data based on machine learning methods," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 2, hlm. 345-354, Feb 2018, doi: 10.1109/JSTARS.2017.2787191.
Y. Liu, S. Ortega-Farias, F. Tian, S. Wang, dan S. Li, "Estimation of Surface and Near-Surface Air Temperatures in Arid Northwest China Using Landsat Satellite Images," Front Environ Sci, vol. 9, Des 2021, doi: 10.3389/fenvs.2021.791336.
H. Shen, Y. Jiang, T. Li, Q. Cheng, C. Zeng, dan L. Zhang, "Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data," Remote Sens Environ, vol. 240, hlm. 111692, Apr 2020, doi: 10.1016/j.rse.2020.111692.
R. Li, T. Huang, Y. Song, S. Huang, dan X. Zhang, "Generating 1 km Spatially Seamless and Temporally Continuous Air Temperature Based on Deep Learning over Yangtze River Basin, China," Remote Sens (Basel), vol. 13, no. 19, hlm. 3904, Sep 2021, doi: 10.3390/rs13193904.
G. Chen dkk., "Integrating weather observations and local-climate-zone-based landscape patterns for regional hourly air temperature mapping using machine learning," Science of The Total Environment, vol. 813, hlm. 151883, Mar 2022, doi: 10.1016/j.scitotenv.2021.151883.
B. E. B. Dewantoro, M. A. Khafid, A. D. A. Putra, A. P. Wicaksono, dan F. W. Andita, "Identification of the impact of vegetation cover changes and the development of urban areas on Urban Heat Island using GIS and remote sensing: A case studies of Sleman regency, Province of Yogyakarta," IOP Conf Ser Mater Sci Eng, vol. 1098, no. 5, hlm. 052023, Mar 2021, doi: 10.1088/1757-899X/1098/5/052023.
M. N. Fatturusi, R. Irsan, dan D. R. Jati, "Ketersediaan Ruang Terbuka Hijau Terhadap Urban Heat Island di Kota Pontianak," Jurnal Teknologi Lingkungan Lahan Basah, vol. 11, no. 1, hlm. 287-296, Jan 2023, doi: 10.26418/jtllb.v11i1.64565.
A. S. Liong, N. Nasrullah, dan B. Sulistyantara, "Assessing the impact of land cover changes on land surface temperature and the relation to urban heat island in Makassar City, South Sulawesi," IOP Conf Ser Earth Environ Sci, vol. 879, no. 1, hlm. 012010, Okt 2021, doi: 10.1088/1755-1315/879/1/012010.
R. N. Listyawati dan P. Prasetiyo, "Analysis of Urban Heat Island Phenomenon as A Global Warming Control Based on Remote Sensing in Jember Urban, Indonesia," IOP Conf Ser Earth Environ Sci, vol. 887, no. 1, hlm. 012002, Okt 2021, doi: 10.1088/1755-1315/887/1/012002.
S. Mukherjee, P. K. Joshi, dan R. D. Garg, "Analysis of urban built-up areas and surface urban heat island using downscaled MODIS derived land surface temperature data," Geocarto Int, vol. 32, no. 8, hlm. 900-918, Agu 2017, doi: 10.1080/10106049.2016.1222634.
R. Yunita, A. Wibowo, Supriatna, dan A. F. Rais, "Urban Heat Island Mitigation Strategy based on Local Climate Zone Classification using Landsat 8 satellite imagery," IOP Conf Ser Earth Environ Sci, vol. 1039, no. 1, hlm. 012013, Sep 2022, doi: 10.1088/1755-1315/1039/1/012013.
Mahrup, M. Ma'shum, M. Idris, dan Fahrudin, "The future of Wallace region in Lombok: the pristine natural resource under climatic and anthropogenic threat," IOP Conf Ser Earth Environ Sci, vol. 913, no. 1, hlm. 012049, Nov 2021, doi: 10.1088/1755-1315/913/1/012049.
S. SUTOMO, E. Van Etten, dan R. Iryadi, "Short communication: Savanna-forest boundary on Mount Rinjani, Lombok Island, West Nusa Tenggara, Indonesia," Biodiversitas, vol. 22, no. 2, Jan 2021, doi: 10.13057/biodiv/d220225.
M. Ciazela dan J. Ciazela, "Topoclimate Mapping Using Landsat ETM+ Thermal Data: Wolin Island, Poland," Remote Sens (Basel), vol. 13, no. 14, hlm. 2712, Jul 2021, doi: 10.3390/rs13142712.
H. Zhang, W. W. Immerzeel, F. Zhang, R. J. de Kok, S. J. Gorrie, dan M. Ye, "Creating 1-km long-term (1980–2014) daily average air temperatures over the Tibetan Plateau by integrating eight types of reanalysis and land data assimilation products downscaled with MODIS-estimated temperature lapse rates based on machine learning," International Journal of Applied Earth Observation and Geoinformation, vol. 97, hlm. 102295, Mei 2021, doi: 10.1016/j.jag.2021.102295.
A. Aslam dan I. A. Rana, "The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes," Urban Clim, vol. 42, hlm. 101120, Mar 2022, doi: 10.1016/j.uclim.2022.101120.
L. Li dan Y. Zha, "Estimating monthly average temperature by remote sensing in China," Advances in Space Research, vol. 63, no. 8, hlm. 2345-2357, Apr 2019, doi: 10.1016/j.asr.2018.12.039.
D. Long dkk., "Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach," Remote Sens Environ, vol. 246, hlm. 111863, Sep 2020, doi: 10.1016/j.rse.2020.111863.