Tinjauan Pustaka: Analisis Spasial-Temporal Fluktuasi TDS dan Konduktivitas Listrik sebagai Indikator Awal Kontaminasi Logam Berat

Main Article Content

Uswatun Chasanah

Abstract

Total Dissolved Solids (TDS) dan Konduktivitas Listrik (Electrical Conductivity/EC) merupakan parameter kunci dalam pemantauan kualitas air yang sering berkorelasi kuat dengan keberadaan kontaminan, termasuk logam berat. Tinjauan pustaka ini bertujuan untuk menganalisis perkembangan tema penelitian mengenai hubungan spasial-temporal antara TDS, EC, dan kontaminasi logam berat dalam air tanah dan permukaan berdasarkan studi-studi terkini. Metode yang digunakan adalah tinjauan sistematis terhadap beberapa artikel penelitian yang terindeks Scopus yang terbit antara tahun 2016 hingga 2025. Hasil analisis menunjukkan bahwa TDS dan EC secara konsisten berfungsi sebagai indikator awal yang efektif untuk identifikasi awal area yang tercemar logam berat, dimana nilai tinggi kedua parameter ini sering kali bertepatan dengan konsentrasi logam berat (seperti Cd, Pb, Cr) yang melebihi batas aman. Studi-studi tersebut memanfaatkan teknik Geographic Information System (GIS) dan penginderaan jauh untuk memetakan sebaran spasial dan tren temporal. Tinjauan ini juga mengidentifikasi kesenjangan penelitian, seperti kebutuhan akan model empiris yang lebih kuat yang menghubungkan langsung variasi TDS dan EC dengan jenis dan konsentrasi logam berat spesifik, serta perlunya integrasi data satelit resolusi tinggi untuk pemantauan berkelanjutan. Disimpulkan bahwa pendekatan integratif antara pengukuran in-situ TDS EC, analisis logam berat, dan teknologi geospasial sangat penting untuk manajemen sumber daya air yang berkelanjutan.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
U. Chasanah, “Tinjauan Pustaka: Analisis Spasial-Temporal Fluktuasi TDS dan Konduktivitas Listrik sebagai Indikator Awal Kontaminasi Logam Berat”, JPJI, vol. 4, no. 2, pp. 76–81, Sep. 2025.
Section
Literature Review

References

B. Ngwenya, T. Paepae, and P. N. Bokoro, “Monitoring ambient water quality using machine learning and IoT: A review and recommendations for advancing SDG indicator 6.3.2,” May 01, 2025, Elsevier Ltd. doi: 10.1016/j.jwpe.2025.107664.

“Integrating Remote Sensing and Temporal Data for the Predictive Modeling of Total Suspended Solids (TSS) by 1. Ananta Das Titu (Reg,” 2025.

E. A. L. Salas et al., “Integration of Google Earth Engine, Sentinel-2 images, and machine learning for temporal mapping of total dissolved solids in river systems,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-12548-9.

E. T. de Camargo et al., “Low-Cost Water Quality Sensors for IoT: A Systematic Review,” May 01, 2023, MDPI. doi: 10.3390/s23094424.

W. Arachchi, G. Thilini, and N. Gunawardhana, “SPATIAL-TEMPORAL CONTAMINANT SPREADING ANALYSIS IN LAKE MAUREPAS,” 2025.

T. Ariani and B. Hariyadi, “Integration of Ethnoscience Approach in Physics Learning Based on Laboratory Practice: A Systematic Literature Review,” Jurnal Penelitian Pembelajaran Fisika, vol. 15, no. 3, pp. 252–262, Aug. 2024, doi: 10.26877/jp2f.v15i3.18765.

R. C. Karangoda and K. G. N. Nanayakkara, “Spatial Analysis of Groundwater Hardness, Electrical Conductivity, pH, and Underlying Causes for Variations in Ratnapura District, Sri Lanka,” ACS ES&T Water, 2022, doi: 10.1021/acsestwater.2c00288.

B. Tutmez, Z. Hatipoglu, and U. Kaymak, “Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system,” Comput Geosci, vol. 32, no. 4, pp. 421–433, 2006, doi: 10.1016/j.cageo.2005.07.003.

C. A. Dykes, J. Pearson, G. D. Bending, and S. Abolfathi, “Spatial and temporal dynamics of methane and carbon dioxide fluxes in a constructed wetland,” Journal of Water Process Engineering, vol. 76, Aug. 2025, doi: 10.1016/j.jwpe.2025.108130.

M. Dhanasekarapandian, S. Chandran, D. S. Devi, and V. Kumar, “Spatial and temporal variation of groundwater quality and its suitability for irrigation and drinking purpose using GIS and WQI in an urban fringe,” Journal of African Earth Sciences, vol. 124, pp. 270–288, Dec. 2016, doi: 10.1016/j.jafrearsci.2016.08.015.

A. Rashid et al., “Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system,” Chemosphere, vol. 225, pp. 785–795, Jun. 2019, doi: 10.1016/j.chemosphere.2019.03.066.

M. Varol, G. Karakaya, and K. Alpaslan, “Water quality assessment of the Karasu River (Turkey) using various indices, multivariate statistics and APCS-MLR model,” Chemosphere, vol. 308, Dec. 2022, doi: 10.1016/j.chemosphere.2022.136415.

P. Kowe et al., “Spatial-temporal variability analysis of water quality using remote sensing data: A case study of Lake Manyame,” Sci Afr, vol. 21, Sep. 2023, doi: 10.1016/j.sciaf.2023.e01877.

Z. Chen and S. Zhao, “Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine,” Sep. 01, 2022, Elsevier B.V. doi: 10.1016/j.jag.2022.103010.

P. A. Beddows, P. L. Smart, F. F. Whitaker, and S. L. Smith, “Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity,” J Hydrol (Amst), vol. 346, no. 1–2, pp. 18–32, 2007, doi: 10.1016/j.jhydrol.2007.08.013.

D. M. Bushero, Z. A. Angello, and B. M. Behailu, “Evaluation of hydrochemistry and identification of pollution hotspots of little Akaki river using integrated water quality index and GIS,” Environmental Challenges, vol. 8, Aug. 2022, doi: 10.1016/j.envc.2022.100587.