Perbandingan Metode GWR, MGWR, dan MGWR-SAR pada Data Persentase Penduduk Miskin di Pulau Jawa
DOI:
https://doi.org/10.12962/limits.v22i2.3057Keywords:
Efek Spasial, GWR, Kemiskinan, MGWR, MGWR-SARAbstract
The primary goal of Sustainable Development Goals (SDGs) is to end poverty everywhere in all its forms. Poverty is defined as the inability to meet basic needs, such as food, clothing, shelter, education, and healthcare. In Indonesia, the poor population has reached 26.36 million people, with half of them residing on Java Island. Extensive research has been conducted on poverty, particularly using a spatial approach. Spatial regression is a statistical method that explicitly incorporates geographical aspects into a model framework. In spatial regression, two main challenges arise: spatial dependence and heterogeneity. These two effects are inherently interconnected and must be considered simultaneously. Mixed Geographically Weighted Regression with Spatial Autoregressive (MGWR-SAR) is a combination of Mixed Geographically Weighted Regression (MGWR) and Spatial Autoregressive (SAR). MGWR-SAR effectively addresses both spatial dependence and spatial heterogeneity simultaneously. This study aims to determine the best method for modeling the percentage of poor population on Java. The variables used included PPM, BPJSPBI, PPKM, PLSMP, PPTB, BPNT, NCPR, and IPM. The kernel function was selected based on the smallest cross-validation (CV) value, which was a Fixed Gaussian with a CV of 603.8268. Based on the GWR model, the global variables identified were PPTB, BPNT, and IPM, whereas the remaining variables were local. The MGWR-SAR method was found to be the best model for predicting the percentage of poor population, with an AIC = 448.9645, RMSE = 1.9075, and = 75.23%.
Downloads
References
[UN] United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development. New York: UN, 2015.
Murdiyana and Mulyana, “Analisis Kebijakan pengatasan kemiskinan di Indonesia,” J. Polit. Pemerintah., vol. 10, no. 1, pp. 73–96, 2017.
B. Gweshengwe, N. H. Hassan, and X. Duan, “Defining the characteristics of poverty and their implications for poverty analysis,” Cogent Soc. Sci., vol. 6, no. 1, pp. 1–10, 2020, doi: 10.1080/23311886.2020.1768669.
[Kemenkeu] Kementerian Keuangan Republik Indonesia, “Kemiskinan Makro dan Kemiskinan Mikro [internet],” Kementerian Keuangan Republik Indonesia, 2023. https://djpb.kemenkeu.go.id/kppn/lubuksikaping/id/data-publikasi/artikel/3155-kemiskinan-makro-dan-kemiskinan-mikro.html (accessed Jun. 10, 2024).
A. Nugroho, H. Amir, I. Maududy, and I. Marlina, “Poverty eradication programs in Indonesia: progress, challenges and reforms,” J. Policy Model., vol. 43, no. 6, pp. 1204–1224, 2021, doi: 10.1016/j.jpolmod.2021.05.002.
[UN] United Nations, World Population Prospects 2022. New York: UN, 2022.
[BPS] Badan Pusat Statistik, Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2023. Jakarta: (ID):BPS, 2023.
R. J. G. M. Florax and P. Nijkamp, Misspecification in Linear Spatial Regression Models. Amsterdam: Tinbergen Institute, 2003.
J. LeSage and R. K. Pace, Introduction to Spatial Econometrics. New York: Chapman and Hall/CRC, 2009.
M. Liu, Y. Ge, S. Hu, and H. Hao, “The spatial effects of regional poverty: spatial dependence, spatial heterogeneity and scale effects,” ISPRS Int. J. Geo-Information, vol. 12, no. 12, p. 501, 2023, doi: 10.3390/ijgi12120501.
D. O. Mahara and A. Fauzan, “Impacts of human development index and percentage of total population on poverty using ols and gwr models in central java, indonesia,” EKSAKTA J. Sci. Data Anal., vol. 2, no. 2, pp. 142–154, 2021.
D. C. Wheeler, “Geographically weighted regression,” in Handbook of regional science, Berlin: Heidelberg: Springer Berlin Heidelberg, 2021, pp. 1895–1921.
A. H. Asianingrum, A. Djuraidah, and Indahwati, “Robust mixed geographically and temporally weighted regression to modeling the percentage of poverty population in java in 2012-2018,” Int. J. Sci. Basic Appl. Res., vol. 53, no. 2, pp. 186–197, 2020.
C. Brunsdon, A. S. Fotheringham, and M. Charlton, “Spatial nonstationarity and autoregressive models,” Environ. Plan. A Econ. Sp., vol. 30, no. 6, pp. 957–973, 1998, doi: 10.1068/a300957.
P. Harris, “A simulation study on specifying a regression model for spatial data: choosing between autocorrelation and heterogeneity effects,” Geogr. Anal., vol. 51, no. 2, pp. 151–181, 2019, doi: 10.1111/gean.12163.
G. Geniaux and D. Martinetti, “A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models,” Reg. Sci. Urban Econ., vol. 72, pp. 74–85, 2018, doi: 10.1016/j.regsciurbeco.2017.04.001.
A. Furková, “Implementation of MGWR-SAR models for investigating a local particularity of European Regional innovation processes,” Cent. Eur. J. Oper. Res., vol. 30, no. 2, pp. 733–755, 2022, doi: 10.1007/s10100-021-00764-3.
M. Jaya, B. N. Ruchjana, B. Tantular, and Z. Hanif, “Simulation and application of the spatial autoregressive geographically weighted regression model (SAR-GWR),” ARPN J. Eng. Appl. Sci., vol. 13, no. 1, pp. 1–9, 2018.
M. A. Zewdie, M. N. Aidi, and B. Sartono, “Spatial econometric model of poverty in java island,” Am. J. Theor. Appl. Stat., vol. 4, no. 6, pp. 420–425, 2015, doi: 10.11648/j.ajtas.20150406.11.
A. C. Huda, A. Az-Zahra, F. P. Yasmin, I. W. K. Ningrum, W. S. Putra, and Budiasih, “Analisis regresi spasial persentase kemiskinan di kawasan timur Indonesia tahun 2022,” in Seminar Nasional Official Statistic, 2023, pp. 747–756. doi: 10.34123/semnasoffstat.v2023i1.1792.
N. A. Alya, Q. Almaulidiyah, B. R. Farouk, D. Rantini, A. Ramadan, and F. Othman, “Comparison of geographically weighted regression (GWR) and mixed geographically weighted regression (MGWR) models on the poverty levels in Central Java in 2023,” IAENG Int. J. Appl. Math., vol. 54, no. 12, pp. 2746–2757, 2024.
J. Liu et al., “A mixed geographically and temporally weighted regression: exploring spatial-temporal variations from global and local perspectives,” Entropy, vol. 19, no. 53, pp. 1–20, 2017, doi: 10.3390/e19020053.
H. Yasin, “Pemilihan variabel pada model geographically weighted regression,” Media Stat., vol. 4, no. 2, pp. 63–72, 2011, doi: 10.14710/medstat.4.2.63-72.
A. Baldassarre, D. Carullo, P. Di Caro, E. Fusco, P. Giacobbe, and C. Orecchia, “Bilateral regional trade flows in Italy: an origin-destination-commodity GWR-SAR approach,” 2023.
A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, 1st ed. Bogor: Sosial dan Ekonomi, 2020.
A. C. Huda, A. Az-Zahra, F. P. Yasmin, I. W. K. Ningrum, W. S. Putra, and Budiasih, “Analisis regresi spasial persentase kemiskinan di kawasan timur Indonesia tahun 2022,” in Seminar Nasional Official Statistic, 2023, pp. 747–756. doi: 10.34123/semnasoffstat.v2023i1.1792.
N. A. Alya, Q. Almaulidiyah, B. R. Farouk, D. Rantini, A. Ramadan, and F. Othman, “Comparison of geographically weighted regression (GWR) and mixed geographically weighted regression (MGWR) models on the poverty levels in Central Java in 2023,” IAENG Int. J. Appl. Math., vol. 54, no. 12, pp. 2746–2757, 2024.
J. Liu et al., “A mixed geographically and temporally weighted regression: exploring spatial-temporal variations from global and local perspectives,” Entropy, vol. 19, no. 53, pp. 1–20, 2017, doi: 10.3390/e19020053.
H. Yasin, “Pemilihan variabel pada model geographically weighted regression,” Media Stat., vol. 4, no. 2, pp. 63–72, 2011, doi: 10.14710/medstat.4.2.63-72.
A. Baldassarre, D. Carullo, P. Di Caro, E. Fusco, P. Giacobbe, and C. Orecchia, “Bilateral regional trade flows in Italy: an origin-destination-commodity GWR-SAR approach,” 2023.
A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, 1st ed. Bogor: Sosial dan Ekonomi, 2020.
Suritman, Raupong, and A. Kalondeng, “Pemodelan mixed geographically weighted regression yang mengandung multikolinearitas dengan regresi ridge,” Estimasi J. Stat. Its Appl., vol. 4, no. 1, pp. 100–113, 2023, doi: 10.20956/ejsa.vi.25426.
D. Kusnandar, N. N. Debataraja, and S. Fitriani, “Pemodelan sebaran total dissolved solid menggunakan metode mixed geographically weighted regression,” J. Apl. Stat. Komputasi Stat., vol. 13, no. 1, pp. 9–16, 2021.
I. G. N. M. Jaya, B. Tantular, and Zulhanif, “Optimalisasi Matriks Bobot Spasial Berdasarkan K-Nearest Neighbor dalam Spasial Lag Model.,” in Konferensi Nasional Penelitian Matematika dan Pembelajarannya II (KNPMPII) Universitas Muhammadiyah Surakarta 18 Maret 2017, Bandung: Departemen Statistika FMIPA UNPAD, 2017.
L. Anselin, Spatial Econometrics: Methods and Models, 1st ed. Dordrecht: Kluwer Academic Publisher, 1988.
C. P. S. Purnamasari and Y. Widyaningsih, “Perbandingan performa bandwidth CV, AICc, dan BIC pada model geographically weighted regression (aplikasi pada data pengangguran di Pulau Jawa),” INFERENSI, no. Special Issue: Seminar Nasional Statistika XI 2022, pp. 71–83, 2022, doi: 10.12962/j27213862.v1i1.19130.
A. C. Huda, A. Az-Zahra, F. P. Yasmin, I. W. K. Ningrum, W. S. Putra, and Budiasih, “Analisis regresi spasial persentase kemiskinan di kawasan timur Indonesia tahun 2022,” in Seminar Nasional Official Statistic, 2023, pp. 747–756. doi: 10.34123/semnasoffstat.v2023i1.1792.
N. A. Alya, Q. Almaulidiyah, B. R. Farouk, D. Rantini, A. Ramadan, and F. Othman, “Comparison of geographically weighted regression (GWR) and mixed geographically weighted regression (MGWR) models on the poverty levels in Central Java in 2023,” IAENG Int. J. Appl. Math., vol. 54, no. 12, pp. 2746–2757, 2024.
J. Liu et al., “A mixed geographically and temporally weighted regression: exploring spatial-temporal variations from global and local perspectives,” Entropy, vol. 19, no. 53, pp. 1–20, 2017, doi: 10.3390/e19020053.
H. Yasin, “Pemilihan variabel pada model geographically weighted regression,” Media Stat., vol. 4, no. 2, pp. 63–72, 2011, doi: 10.14710/medstat.4.2.63-72.
A. Baldassarre, D. Carullo, P. Di Caro, E. Fusco, P. Giacobbe, and C. Orecchia, “Bilateral regional trade flows in Italy: an origin-destination-commodity GWR-SAR approach,” 2023.
A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, 1st ed. Bogor: Sosial dan Ekonomi, 2020.
Suritman, Raupong, and A. Kalondeng, “Pemodelan mixed geographically weighted regression yang mengandung multikolinearitas dengan regresi ridge,” Estimasi J. Stat. Its Appl., vol. 4, no. 1, pp. 100–113, 2023, doi: 10.20956/ejsa.vi.25426.
D. Kusnandar, N. N. Debataraja, and S. Fitriani, “Pemodelan sebaran total dissolved solid menggunakan metode mixed geographically weighted regression,” J. Apl. Stat. Komputasi Stat., vol. 13, no. 1, pp. 9–16, 2021.
I. G. N. M. Jaya, B. Tantular, and Zulhanif, “Optimalisasi Matriks Bobot Spasial Berdasarkan K-Nearest Neighbor dalam Spasial Lag Model.,” in Konferensi Nasional Penelitian Matematika dan Pembelajarannya II (KNPMPII) Universitas Muhammadiyah Surakarta 18 Maret 2017, Bandung: Departemen Statistika FMIPA UNPAD, 2017.
L. Anselin, Spatial Econometrics: Methods and Models, 1st ed. Dordrecht: Kluwer Academic Publisher, 1988.
C. P. S. Purnamasari and Y. Widyaningsih, “Perbandingan performa bandwidth CV, AICc, dan BIC pada model geographically weighted regression (aplikasi pada data pengangguran di Pulau Jawa),” INFERENSI, no. Special Issue: Seminar Nasional Statistika XI 2022, pp. 71–83, 2022, doi: 10.12962/j27213862.v1i1.19130.
P. Newbold, W. Carlson, W. L. Carlson, and B. Thorne, Statistics for Business and Economics, Global Edition, 9th ed. London: Pearson Education, 2019.
A. C. Huda, A. Az-Zahra, F. P. Yasmin, I. W. K. Ningrum, W. S. Putra, and Budiasih, “Analisis regresi spasial persentase kemiskinan di kawasan timur Indonesia tahun 2022,” in Seminar Nasional Official Statistic, 2023, pp. 747–756. doi: 10.34123/semnasoffstat.v2023i1.1792.
N. A. Alya, Q. Almaulidiyah, B. R. Farouk, D. Rantini, A. Ramadan, and F. Othman, “Comparison of geographically weighted regression (GWR) and mixed geographically weighted regression (MGWR) models on the poverty levels in Central Java in 2023,” IAENG Int. J. Appl. Math., vol. 54, no. 12, pp. 2746–2757, 2024.
J. Liu et al., “A mixed geographically and temporally weighted regression: exploring spatial-temporal variations from global and local perspectives,” Entropy, vol. 19, no. 53, pp. 1–20, 2017, doi: 10.3390/e19020053.
H. Yasin, “Pemilihan variabel pada model geographically weighted regression,” Media Stat., vol. 4, no. 2, pp. 63–72, 2011, doi: 10.14710/medstat.4.2.63-72.
A. Baldassarre, D. Carullo, P. Di Caro, E. Fusco, P. Giacobbe, and C. Orecchia, “Bilateral regional trade flows in Italy: an origin-destination-commodity GWR-SAR approach,” 2023.
A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, 1st ed. Bogor: Sosial dan Ekonomi, 2020.
Suritman, Raupong, and A. Kalondeng, “Pemodelan mixed geographically weighted regression yang mengandung multikolinearitas dengan regresi ridge,” Estimasi J. Stat. Its Appl., vol. 4, no. 1, pp. 100–113, 2023, doi: 10.20956/ejsa.vi.25426.
D. Kusnandar, N. N. Debataraja, and S. Fitriani, “Pemodelan sebaran total dissolved solid menggunakan metode mixed geographically weighted regression,” J. Apl. Stat. Komputasi Stat., vol. 13, no. 1, pp. 9–16, 2021.
I. G. N. M. Jaya, B. Tantular, and Zulhanif, “Optimalisasi Matriks Bobot Spasial Berdasarkan K-Nearest Neighbor dalam Spasial Lag Model.,” in Konferensi Nasional Penelitian Matematika dan Pembelajarannya II (KNPMPII) Universitas Muhammadiyah Surakarta 18 Maret 2017, Bandung: Departemen Statistika FMIPA UNPAD, 2017.
L. Anselin, Spatial Econometrics: Methods and Models, 1st ed. Dordrecht: Kluwer Academic Publisher, 1988.
C. P. S. Purnamasari and Y. Widyaningsih, “Perbandingan performa bandwidth CV, AICc, dan BIC pada model geographically weighted regression (aplikasi pada data pengangguran di Pulau Jawa),” INFERENSI, no. Special Issue: Seminar Nasional Statistika XI 2022, pp. 71–83, 2022, doi: 10.12962/j27213862.v1i1.19130.
P. Newbold, W. Carlson, W. L. Carlson, and B. Thorne, Statistics for Business and Economics, Global Edition, 9th ed. London: Pearson Education, 2019.
J. F. Hair Jr, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 8th ed. United Kingdom: Hampshire: Cengage Learning EMEA, 2019.



