Perbandingan Metode Euler - Estimasi Galat Neural Network dan Metode Runge Kutta Orde 4 dalam Menyelesaikan Persamaan Diferensial Biasa Linear

Authors

  • Ratna Herdiana Universitas Diponegoro
  • Clarine Alfiani Universitas Diponegoro

DOI:

https://doi.org/10.12962/limits.v22i2.3467

Keywords:

Ordinary Differential Equation, Error Estimation using Neural Network Method, 4th Order Runge-Kutta Method

Abstract

Linear ordinary differential equations are a type of differential equation that is generally easy to solve analytically when the function on a partial integral has a simple form. However, when the function is a difficult function, it requires other methods such as numerical methods and methods adapted from neural networks because analytical methods can only be used when the problem has a simple geometric interpretation. This study involves the Euler method followed by error estimation using neural networks and the Runge-Kutta Orde-4 method as a comparison. The comparison was carried out by solving four equations which were then analyzed for the results and errors in each method based on the graphs generated and the MAPE criteria. The results of the study based on graphs show that the error generated by the method with error estimation using neural networks is more stable than the 4th Order Runge-Kutta method. In addition, based on the results of calculations with the MAPE criteria, the error estimation method using neural networks produces a very high level of accuracy in the category, while the 4th Order Runge-Kutta method produces a level of accuracy in two categories, namely the very high and reasonable categories

Downloads

Download data is not yet available.

References

S. L. Ross, DIfferential Equation (third edition). New York: John Wiley&SonsInc., 2004.

H. Nam, K. R. Baek, and S. Bu, “Error estimation using neural network technique for solving ordinary differential equations,” Advances in Continuous and Discrete Models, vol. 2022, no. 1, Dec. 2022, doi: 10.1186/s13662-022-03718-4.

I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Trans Neural Netw, vol. 9, no. 5, pp. 987–1000, 1998, doi: 10.1109/72.712178.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural Ordinary Differential Equations,” in NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, New York: Curran Associates Inc, Jun. 2018, pp. 6572–6583.

P. Kim, X. Piao, W. Jung, and S. Bu, “A new approach to estimating a numerical solution in the error embedded correction framework,” Adv Differ Equ, vol. 2018, no. 1, p. 168, Dec. 2018, doi: 10.1186/s13662-018-1619-6.

W. Jiang and C. Xuan, “Neural Network for Solving Ordinary Differential Equations,” in 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), IEEE, Dec. 2022, pp. 261–265. doi: 10.1109/CICN56167.2022.10008361.

Dewi Erla Mahmudah, Ratna Dwi Christyanti, Moh. Khoridatul Huda, and Fidia Deny Tisna Amijaya, “Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks,” Teknikom: Teknologi Informasi, Ilmu Komputer Dan Manajemen, vol. 1, no. 2, pp. 67–78, 2017.

W. Guasti Junior and I. P. Santos, “Solving Differential Equations Using Feedforward Neural Networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, 2021, pp. 385–399. doi: 10.1007/978-3-030-86973-1_27.

A. Golovkina and V. Kozynchenko, “Neural Network Representation for Ordinary Differential Equations,” 2023, pp. 39–55. doi: 10.1007/978-3-031-22938-1_3.

Jayme Yeremia Wijaya, The Houw Liong, and Ken Ratrri Retno Wardani, “Perbandingan Penyelesaian Persamaan Diferensial Biasa Menggunakan Metode Backpropagation, Euler, Heun, dan Runge-Kutta Orde 4,” Jurnal Telematika, vol. 11, no. 1, pp. 1–6, 2016.

Fardinah F, “Solusi Persamaan Diferensial Biasa dengan Metode Runge-Kutta Orde Lima,” Jurnal Matematika Dan Statistika Serta Aplikasinya, vol. 5, no. 1, pp. 30–36, 2017.

R. J. C. Chen, P. Bloomfield, and F. W. Cubbage, “Comparing Forecasting Models in Tourism,” Journal of Hospitality and Tourism Research, vol. 32, no. 1, pp. 3–21, 2008, doi: 10.1177/1096348007309566.

Downloads

Published

2025-07-19

How to Cite

Herdiana, R., & Alfiani, C. (2025). Perbandingan Metode Euler - Estimasi Galat Neural Network dan Metode Runge Kutta Orde 4 dalam Menyelesaikan Persamaan Diferensial Biasa Linear. imits: ournal of athematics and ts pplications, 22(2), 73–84. https://doi.org/10.12962/limits.v22i2.3467