Dinamika Solusi dan Kontrol Optimal Model Penyakit ISPA di Kota Malang

Penulis

  • Lukman Hakim Institut Teknologi dan Bisnis Asia
  • Lilis Widayanti Institut Teknologi dan Bisnis Asia

DOI:

https://doi.org/10.12962/limits.v22i3.4204

Kata Kunci:

ISPA Models, Fixed Points, Optimal Control, Pontryagin Principle, Malang City

Abstrak

The current research provides a mathematical model utilizing nonlinear ordinary differential equations to represent the spread of acute respiratory infections (ARI). The model is divided into five compartments: the susceptible population, the vaccinated population, the latent population, the infected population, and the recovered population. Through dynamic analysis, two equilibrium points were determined. The disease-free equilibrium point is stable under conditions, while the endemic equilibrium point exhibits asymptotic stability. The lsqcurvefit methods was implemented to estimate the parameters, facilitating accurate parameter approximation. The acquisition of estimated values was implemented in the sensitivity analysis, and several parameters sensitive to  were obtained: the vaccination rate, the natural death rate, the mortality cause infection rate, and recovery rate. An optimal control problem was designed by incorporating two control variables: firstly, reducing the direct contact between the susceptible and infected populations, and the other focused on increasing the intensity of infected individuals. The solution of optimal control problem was derived using Pontryagin's Principle. The objective function was formulated as a Lagrange to minimize the number of latent and infected individuals, and maximizing the vaccinated and recovered populations. Finally, numerical simulations were performed to validate the theoretical analysis, demonstrating that the results in line with the objective function of optimal control and effectively support the proposed strategies for controlling the disease.

Unduhan

Data unduhan belum tersedia.

Referensi

D. Leris dan M. Rosha, “Model Matematika Penyebaran Penyakit Infeksi Saluran Pernapasan Akut (ISPA) Berdasarkan Lokasi Anatomi Akibat Bakteri Streptococcus Pneumoniae,” J. Math. UNP, vol. 8, no. 2, hal. 31, 2023, doi: 10.24036/unpjomath.v8i2.14330.

Nurfadilah, Fardinah, dan Hikmah, “Analisis Model Matematika Penyebaran Penyakit ISPA,” J. Math. Theory Appl., vol. 3, no. 1, hal. 212–229, 2021.

Dinkes Kota Malang, Profil Kesehatan Kota Malang Tahun 2023. 2023.

S. C. Mpeshe dan N. Nyerere, “Modeling the Dynamics of Coronavirus Disease Pandemic Coupled with Fear Epidemics,” Comput. Math. Methods Med., vol. 2021, 2021, doi: 10.1155/2021/6647425.

Z. Ma, J. Li, J. Li, wendi Wang, Z. Jin, dan Y. Zhou, Dynamical Modeling and Analysis of Epidemics. World Scientific publishing Co. Pte. Ltd., 2009.

S. B. Minucci, R. L. Heise, dan A. M. Reynolds, “Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries,” Front. Appl. Math. Stat., vol. 6, no. August, hal. 1–25, 2020, doi: 10.3389/fams.2020.00036.

P. Kumar dkk., “Effect of acute respiratory infections in infancy on pulmonary function test at 3 years of age: A prospective birth cohort study,” BMJ Open Respir. Res., vol. 7, no. 1, hal. 1–10, 2020, doi: 10.1136/bmjresp-2019-000436.

R. Sungchasit, I. M. Tang, dan P. Pongsumpun, “Mathematical Modeling: Global Stability Analysis of Super Spreading Transmission of Respiratory Syncytial Virus (RSV) Disease,” Computation, vol. 10, no. 7, 2022, doi: 10.3390/computation10070120.

E. Arguni dkk., “Co-infection of SARS-CoV-2 with other viral respiratory pathogens in Yogyakarta, Indonesia: A cross-sectional study,” Ann. Med. Surg., vol. 77, no. April, hal. 103676, 2022, doi: 10.1016/j.amsu.2022.103676.

R. Mirino, D. Dary, dan R. Rifatolistia, “Identification of Factors Causing Acute Respiratory Infection (ARI) of Under-Fives in Community Health Center Work Area in North Jayapura Sub-District,” J. Trop. Pharm. Chem., vol. 6, no. 1, hal. 15–20, 2022, doi: 10.25026/jtpc.v6i1.271.

L. Hakim, T. Trisilowati, dan I. Darti, “Optimal Control of a Cholera Desease Model with Vaccination,” Int. J. Appl. Math. Stat., vol. 53, no. 4, hal. 65–72, 2015.

P. Yosyingyong dan R. Viriyapong, “Global stability and optimal control for a hepatitis B virus infection model with immune response and drug therapy,” J. Appl. Math. Comput., vol. 60, no. 1–2, hal. 537–565, 2019, doi: 10.1007/s12190-018-01226-x.

K. T. Kristanti, T. Trisilowati, dan A. Widodo, “Optimal Control of Cervical Cancer Model with Vaccination and Screening,” J. Exp. Life Sci., vol. 10, no. 2, hal. 72–78, 2020, doi: 10.21776/ub.jels.2020.010.02.01.

Fatmawati, F. F. Herdicho, Windarto, W. Chukwu, dan H. Tasman, “An optimal control of malaria transmission model with mosquito seasonal factor,” Results Phys., vol. 25, 2021, doi: 10.1016/j.rinp.2021.104238.

R. Seck, D. Ngom, B. Ivorra, dan Á. M. Ramos, “An Optimal Control Model to Design Strategies for Reducing the Spread of the Ebola Virus Disease,” Math. Biosci. Eng., vol. 19, no. 2, hal. 1746–1774, 2022, doi: 10.3934/mbe.2022082.

L. Hakim, “Multiple Strategis as Optimal control of a Covid-19 Disease With Quarantine and Using Health Masks,” Barekeng J. Imu Mat. dan Terap., vol. 16, no. 3, hal. 1059–1068, 2022, doi: https://doi.org/10.30598/barekengvol16iss3pp1059-1068.

L. Hakim, “A Pontryagin Principle and Optimal Control of Spreading Covid-19 With Vaccination and Quarantine Subtype,” Commun. Math. Biol. Neurosci., vol. 2023, hal. 1–28, 2023, doi: 10.28919/cmbn/8157.

L. Hakim dan L. Widayanti, “BOUNDEDNESS AND EXISTENCE ANALYSIS SOLUTION OF AN OPTIMAL CONTROL PROBLEMS ON MATHEMATICAL COVID-19 MODEL,” Barekeng J. Imu Mat. dan Terap., vol. 18, no. 2, hal. 797–808, 2024.

L. Perko, Equations and Dynamical Systems. 2001.

L. Hakim dan I. Rodliyah, “MATHEMATICAL STOCHASTICS MODEL OF TUBERCULOSIS USING EMPIRICAL DATA FROM MALANG CITY,” Commun. Math. Biol. Neurosci., vol. 2023, no. 133, hal. 1–24, 2024.

##submission.downloads##

Diterbitkan

2025-11-20

Cara Mengutip

Hakim, L. ., & Widayanti, L. (2025). Dinamika Solusi dan Kontrol Optimal Model Penyakit ISPA di Kota Malang. imits: ournal of athematics and ts pplications, 22(3), 197–216. https://doi.org/10.12962/limits.v22i3.4204